
Research Article

UTSim: A framework and simulator
for UAV air traffic integration, control,
and communication

Amjed Al-Mousa1 , Belal H Sababha1, Nailah Al-Madi2,
Amro Barghouthi1 and Remah Younisse1

Abstract
The interest in unmanned systems especially unmanned aerial vehicle is continuously increasing. Unmanned aerial vehicles
started to become of great benefit in many different fields. It is anticipated that unmanned aerial vehicles will soon become
a main component of the future urban air traffic. The integration of unmanned aerial vehicles within existing air traffic
environments has started getting the attention of researchers. Integrating unmanned systems in the real-world urban air
traffic requires the development of tools and simulators to enable researchers in their ongoing efforts. In this article, a
simulator called UTSim is introduced. The proposed simulator is built using the Unity platform. UTSim is capable of
simulating unmanned aerial vehicle physical specification, navigation, control, communication, sensing and avoidance in
environments with static and moving objects. The simulator enables studying and exploring several unmanned aerial
vehicle air traffic integration issues like sense and avoid, communication protocols, navigation algorithms, and much more.
UTSim is designed and developed to be easily used. The user can specify the properties of the environment, the number
and types of unmanned aerial vehicles in the environment, and specify the algorithm to be used for path planning and
collision avoidance. The simulator outputs a log file with a lot of useful information such as the number of sent and
received messages, the number of detected objects and collided unmanned aerial vehicles. Three scenarios have been
implemented in this article to present the capabilities of UTSim and to illustrate how it can benefit researchers in the field
of integrating unmanned aerial vehicles in urban air traffic.

Keywords
Air traffic integration, control and communication, sense and avoid (S&A), UAV, simulation, Unity, unmanned aerial
systems

Date received: 29 April 2019; accepted: 29 July 2019

Topic: Mobile Robots and Multi-Robot Systems
Topic Editor: Andrey V Savkin
Associate Editor: Istvan Harmati

Introduction

An unmanned aerial vehicle (UAV) is an aircraft that does

not have a human pilot onboard. UAVs are either manually

operated through a remote human pilot or autonomously,

where an onboard autopilot has a predefined mission or

receives mission commands from a ground station. UAVs

can operate in hazardous environments and perform some

dangerous missions, where human life can be at risk. Com-

pared to manned systems, UAVs are usually of lightweight,

able to fly at lower altitudes, and provide a relatively lower

cost alternative.1 UAVs have been of interest in various

fields such as military, policing, firefighting, natural disas-

ter rescue, and even monitoring missions to document

1Computer Engineering Department, PSUT, Amman, Jordan
2Computer Science Department, PSUT, Amman, Jordan

Corresponding author:

Amjed Al-Mousa, Computer Engineering Department, PSUT, Amman

111941, Jordan.

Email: a.almousa@psut.edu.jo

International Journal of Advanced
Robotic Systems

September-October 2019: 1–19
ª The Author(s) 2019

DOI: 10.1177/1729881419870937
journals.sagepub.com/home/arx

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License

(http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/

open-access-at-sage).

https://orcid.org/0000-0002-6427-1008
https://orcid.org/0000-0002-6427-1008
mailto:a.almousa@psut.edu.jo
https://doi.org/10.1177/1729881419870937
http://journals.sagepub.com/home/arx
http://www.creativecommons.org/licenses/by/4.0/
https://us.sagepub.com/en-us/nam/open-access-at-sage
https://us.sagepub.com/en-us/nam/open-access-at-sage
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1729881419870937&domain=pdf&date_stamp=2019-09-10

wildlife abundance, behavior, and habitat.2–5 These differ-

ent types of UAVs have different characteristics and cap-

abilities, such as size, speed, power, energy source,

communication methods and protocols, sensing range, pay-

load, flight duration, maneuvering, and much more. These

characteristics are subject to optimization based on the

intended application.6

UAV research is rising in many different areas and in

many different directions. One field of UAV research is

trajectory motion planning.7 In the case of UAVs, the typ-

ical robotics path planning algorithms get more compli-

cated, as motion becomes a three dimensional (3-D)

problem instead of a three dimensional (2-D), which

increases the degrees of freedom. However, UAVs do not

have the limitations of ground robots, which usually cannot

overcome rocks, climb stairs, or get access to ceilings.

Nonetheless, UAVs need to exhibit a notable degree of

awareness and exactness to accomplish their navigation

and obstacle avoidance tasks successfully.8 Another field

of research is the integration of computer vision algorithms,

visual localization and mapping, obstacle detection, and

target tracking with UAVs.9–12

Although governmental entities’ efforts are still under-

going to develop governance and rules to fly small UAVs

for various commercial and other purposes, some of the

main guidelines and rules started appearing recently. The

Federal Aviation Administration (FAA) released in the sec-

ond half of 2016 the rules (Part 107) for operating small

UAVs weighing below 55 lbs (25 kg).13 Some of the oper-

ation rules may be subject to waiver by the administration.

However, until recently, other rules such as the “Visual line

of sight aircraft operation (§ 107.31)” rule could not have

been waived.14 The rule required the unmanned aircraft to

remain within the visual line of sight of a visual observer. A

beyond visual line of sight waiver has been recently granted

by FAA to a Google’s spin-off drone delivery business

(Wing Aviation LLC) to start operating in two rural com-

munities in Virginia.15

Despite the strict rules of operating UAVs, some commer-

cial delivery companies already started the R&D and testing

to deliver via Drones. Amazon.com introduced (Amazon

Prime Air)16 and United Parcel Service of America, Inc.

(UPS) recently started residential delivery tests via Drone

launched from the top of a truck.17 In addition, Wing Aviation

has started its operations in Australia already within selected

suburbs.18 While these limited licenses are for UAVs operat-

ing in rural and less populated areas, soon drone deliveries

will come closer to urban areas, and we will start having more

dense skies with small size UAV systems. This would require

developing air traffic control (ATC) and management algo-

rithms and protocols. And this would, in turn, require proper

and easy to use simulators to implement and test the devel-

oped algorithms with multiple real-life scenarios before

implementing them on hardware prototypes.

The availability of computer simulation resources bene-

fited UAV development and integration in real-life

applications as they reduce cost, risks, development and

testing time, as well as increase safety levels.19 Some

researchers develop their own simulation environments for

their own custom special UAVs and applications.20 How-

ever, using multiple UAV simulation environments makes

it difficult to build sustainable research, as it becomes hard

to compare different algorithms that were simulated using

different simulation platforms. In addition, it is very time-

consuming to resimulate an algorithm, which sometimes is

not well documented, on a new platform to compare

performance.

Therefore, there is a real need to develop a standard and

easy to use simulator that can simulate different scenarios

and applications using any type of UAV, with different

properties. The simulator should allow for implementing

different algorithms, such as path planning, obstacle avoid-

ance, communication protocols, and much more.

The proposed simulator is developed using a well known

and well-maintained game engine called Unity.21 This pop-

ular, easy to use game engine is used to develop simulators

and video games for computers, game consoles, and mobile

devices. It supports 2-D and 3-D graphics. The user-

friendliness, availability of resources, and the popularity of

Unity will make the proposed simulator of interest for a wide

variety of researchers. In fact, Unity has been used to

develop simulators for other similar applications, like con-

nected vehicles22,23,68 and remote vehicle piloting.24 It is

also used to simulated intelligent agents,25 robotics,26 some

medical application,27,28 and much more.29–31

The contribution of the article is easy to use and custo-

mizable UAV simulator called UTSim. UTSim is capable

of simulating UAV navigation in 3-D space with the ability

to produce enough data that would allow for the evaluation

of the implemented algorithms. The simulator supports the

integration of multiple algorithms like trajectory planning

and collision avoidance algorithms, as well as the interac-

tion with active and passive objects. UTSim can be used as

a standard simulator for any UAV application that may

consist of any number and any type of UAVs. In addition,

the fact that UTSim is built on top of an existing well-

maintained game engine “Unity,” would allow for utilizing

any additional features that get added to the engine.

The rest of the article is organized as follows: The sec-

ond section overviews related work. The third section pre-

sents the simulator design in detail, the platform, and the

architecture. Then, in the fourth section, the capabilities of

the proposed simulator are discussed. Three different test

case scenarios are presented in the fifth section to showcase

some of the results that can be achieved by UTSim. Finally,

the sixth section concludes the article.

Literature review

Simulation is a very important and cost-effective tool, espe-

cially if an actual real-life implementation is costly or asso-

ciated with hazardous conditions. Moreover, simulators

2 International Journal of Advanced Robotic Systems

have other advantages like paving the way to the adoption

of new technologies, lowering training costs, and, most

importantly, enabling researchers to experiment with much

fewer resources and time. For example, the research pre-

sented in the study by Visser et al.32 showed the importance

of developing a simulator, called “AR.Drone,” with

advanced navigation capability using realistic sensor and

motion models. Therefore, the literature is rich with simu-

lators that were proposed to simulate machines and envir-

onments for training, testing, research and development

purposes.33–38 Robots behavior and motion are of high

importance, thus multiple simulators focused on addressing

robots simulation.39–42

Another type of simulators is flight simulators, which is

a software-based virtual reality system that enables pilots,

engineers, and researchers to practice, test, experiment, and

research. Such simulators are used in training pilots in a

virtual environment which is extremely safer and less

expensive. They are also used by engineers to design and

test aircraft models and characteristics. Researchers also

benefit from such simulators in developing and testing air-

craft controls and air traffic management protocols and

communication systems.

From the application perspective, flight simulators

simulate the behavior of an aircraft considering the aircraft

design, the input commands, and the environment. Beha-

vior is predicted through a computation model that is based

either on empirical data in forms of lookup tables or based

on a live physics engine such as the “blade element

theory.”43,44 Examples of such simulators include

X-Plane by Laminar Research,45 FlightGear an open-

source project,46 and Flight Simulator X (FSX) by Micro-

soft.47 Some flight simulators such as X-Plane, FSX, and

FlightGear are interfaceable with network and Internet-

based flight simulation networks such as the Virtual Air

Traffic Simulation Network.48,49

The authors in Rodriguez-Fernandez et al.50 presented a

low-cost and easily distributable simulator focused on

simulating missions carried out by multiple UAVs while

allowing for extraction at the same time. The simulator is

called Drone Watch and Rescue (DWR) and focuses on the

simulation of missions involving multiple UAVs. DWR

was developed using modern web development technolo-

gies from the field of video games and designed with a

2-level architecture (server–client). The limitations of

using modern web technologies for UAV simulations are

the high system requirements needed, in which current

JavaScript engines have notorious performance troubles

when running compute-intensive jobs.

A Real-time Multi-UAV Simulator (RMUS) was pre-

sented in the study by Goktogan et al.51 with implementa-

tion to test and validate mechanisms for real demonstration

of multiple UAVs data collection and control. In addition to

the included mechanisms (off-line complex simulations,

Hardware-in-the-Loop (HIL) tests, validation tests, and

online mission control system), the article presented a

communication framework called CommLibX that allows

simulation modules to communicate over virtual channels

and can be easily ported onto real hardware.

AirSim52,53 is a relatively new open-source cross-

platform (Linux and Windows) simulator built on top of

“Unreal Engine,” which offers physically and visually rea-

listic simulations. It includes a physics engine that can

operate at high frequency for real-time HIL simulations

with support for popular protocols. It also enables the simu-

lation of a host of physical phenomena, such as gravity,

magnetism, atmospheric conditions, and provides sensor

models that attempt to mimic real-life. AirSim was pro-

posed to enable designers and developers of robotic sys-

tems to generate training data to be used by machine

learning algorithms. It is designed to be extensible to

accommodate different types of vehicles, hardware plat-

forms, and software protocols. The core components of

AirSim include environment model, vehicle model, physics

engine, sensor models, rendering interface, public Applica-

tion Programming Interface (API) layer, and an interface

layer for vehicle firmware. Several things can be improved

in AirSim, as it currently does not:

� Simulate richer collision response nor advanced

ground interaction models.

� Simulate various oddities in camera sensors except

those directly available in “Unreal engine.”

� Have advanced noise models and lens models.

� Simulate the degradation of GPS signals.

� Simulate advanced wind effects and thermal simula-

tions for fixed-wing vehicles.

Gazebo54 is one of the most popular simulation plat-

forms. It is distinguished by including a physics engine, a

host of sensor models, and the ability to create 3-D virtual

worlds. Moreover, it can be used to build different types of

robots such as manipulator’s arms. However, it has limita-

tions in terms of photorealism and a legacy physics engine.

RotorS35 is a modular simulation framework intended

for the design of micro aerial vehicles (MAVs). It enables

developing and simulating control and state estimation

algorithms for MAVs. RotorS is based on Gazebo plugins

and the Gazebo physics engine. A key advantage is that it

created a modular way of assembling MAVs.

A multi-agent simulation system called Ether was

designed and developed in the study by Lundell et al.55

to facilitate the evaluation of mission planning models for

teams of UAVs. Ether has been built as an agent-based

system, where the drones and the environment are sepa-

rately developed and interlaced at runtime through a simple

pluggable component called Emods. While using Emods

provides flexibility, it also introduces overhead for users

who are trying to build their Emods to test their algorithms.

Garcia and Barnes presented a framework that would

enable researchers to study the distributed control algo-

rithms in a multi-UAV scenario using models of realistic

Al-Mousa et al. 3

unmanned and manned aerial vehicles in real-world mod-

eled environments.56

The authors in Meyer et al.57 presented the Hector sys-

tem which is integrated with Robot Operating System

(ROS)58 and the Gazebo simulator. This comprehensive

approach allows simultaneous simulation of diverse aspects

such as flight dynamics, onboard sensors, external imaging

sensors, and complex environments. It focuses on quadro-

tor UAVs and has detailed dynamical models. It also has

the same limitations as Gazebo.

The authors in Ganoni and Mukundan59 proposed a simu-

lation architecture that uses the Unreal Engine 4 for gener-

ating both optical and depth sensor outputs from any position

and orientation within the environment. As well as providing

several key domain-specific simulation capabilities. For

example, it allows the simulation of multiple robots and

drones in highly realistic models. However, it is focused

on implementing and testing computer vision algorithms

used by UAVs. Users can test and validate computer vision

algorithms involving different drone configurations under

many types of environmental effects such as wind gusts.

Other research presented the design of a HIL simulation

framework and its actual implementation on a custom con-

structed UAV helicopter system.20 Such simulation is

important because it enables the verification of the overall

control performance and safety of the UAV before conduct-

ing test flights. The proposed framework contains four

modules: onboard hardware, flight control, ground station,

and software. All integrated into a HIL simulation environ-

ment. The UAVs in the presented research are utilized for

implementing newly developed automatic control tech-

niques and missions such as ground target detection and

tracking and multi-UAV cooperation. Simulation results

were compared to those obtained from actual test flights

and showed that the simulator is capable of efficiently pre-

dicting the real flight situations.

Also, many researchers used MATLAB tools60–64 to

simulate their UAVs and scenarios, with most of the work

being very limited to certain types or aspects of UAVs.

However, many of these simulators such as X-Plane,

FlightGear, and FSX take the aircraft input commands

through regular computer input devices such as keyboards,

joysticks, or Software APIs. Some APIs such as Math-

Works FlightGear to MATLAB Simulink interface65

enable researchers to develop aircraft control algorithms

and ATC protocols and interface the developed algorithms

and protocols in the simulation environment.

The Virtual Air Traffic Simulation Network (VAT-

SIM),48,49 founded in July 2001, is a completely free online

platform, which allows virtual pilots, wherever they are in

the world, to connect their flight simulators into a single

shared virtual world. VATSIM world helps to build and

maintain communities across the globe, providing

resources, training and a place to share the experience of

VATSIM. It provides users with virtual skies and the ability

to fly all kinds of aircraft all over the world. Users can be

pilots or air traffic controllers, who just need to install a

software application that connects the Flight Simulator

with the VATSIM servers. Clients are available for FSX,

FS9, P3D, and X-Plane. These applications also enable

users to communicate with ATC and other aircraft as well.

Lockheed Martin Prepar3D66 is a commercial visual

simulation platform that allows users to create training sce-

narios across aviation, maritime, and ground domains. It is

used by pilots, academic, commercial organizations, and

military. Prepar3D can be used for different learning sce-

narios including vehicle procedures training, cockpit famil-

iarization, flight planning, air traffic controller training, and

emergency response preparation. Prepar3D main features

include whole earth training environment, customizable

atmosphere, easy configuration of hardware, ATC, flight

planner, and expandable vehicle library.

Table 1 presents a summary of the main relevant simu-

lators with their highlights and limitations. The UTSim pro-

posed in this article is designed to be a general UAV

simulator that can be used to test different UAV aspects such

as path planning, communication protocols, object detection

and other high-level controls and algorithms related to the

mission and environment rather than specific vehicle-related

controls. UTSim allows developers and researchers to imple-

ment their motion, navigation, and path planning scenarios

easily and without any limitations. At the same time, its

infrastructure—Unity—is well maintained and developed

continuously for more features by the gaming community.

Proposed simulator design

The simulator proposed in this article is designed to enable

researchers and allow them to easily create automated and

flexible UAV-related testing environments. It permits the

creation of different UAV simulation scenarios and capable

of testing algorithms like sense and avoid (S&A) and colli-

sion avoidance algorithms. The proposed simulator gives

the user—in each simulation session—full control of the

number of UAVs, the type of each UAV, the initial and

target locations, and much more. It provides users with the

ability to specify the environment attributes such as dimen-

sions of the environment and passive objects number,

dimensions, and location.

UAVs can be controlled to move from starting points to

target positions with predefined altitudes and speeds. The

change of altitude, speed, rotation, or even target position is

also allowed after UAV takeoff and start of a mission. The

simulator platform, customization, configuration, and

architecture are discussed in detail in the following subsec-

tions as well as in Appendix 1.

The simulator platform: Unity

The proposed simulator is developed using the Unity game

engine.21 Unity is a platform independent game engine

developed by Unity Technologies.67 It is used to develop

4 International Journal of Advanced Robotic Systems

simulators and video games for computers, game consoles,

and mobile devices. It supports 2-D and 3-D graphics, as

shown in Figure 1. In addition, the game engine provides

scripting through C#, JavaScript, Unity Script, or BOO

coding languages.

The simulator is implemented on top of the Unity game

engine because it is easy to generate simulation environments

in this platform. It provides a simple cooperative environment

that facilitates controlling the attributes of any desired envi-

ronment component. Thus, allowing to easily create simple

rural areas as well as sophisticated city environments. The

dimensions of the simulation area, number of UAVs, passive

objects density, dimensions and distribution through the area

can all be set and controlled easily through Unity. In Unity, it

is also easy to load run files and retrieve simulation sessions

parameters and data for further analysis and study. This is

enabled through C# scripts. The performance of the simulator

can also be monitored visually through Unity’s main screen.

In addition, UAVs movement, passive objects and ground

stations are all visual on Unity main screen.

Table 1. Summary of main relevant simulators and tools.

Simulator Features Limitations

DWR50 � Low-cost
� Easily distributable simulator (built using web

technologies)
� 2-Level architecture (server–client)
� Simulating missions carried out by multiple UAVs,

while allowing for data extraction

� High system requirements needed

RMUS51 � Supports multiple UAVs
� Data collection and control
� Support the direct communication links between

UAVs
� Functions as both a testing and validation

mechanism

� Separate framework for communication simulation;
CommLibX
� Constrained environment

AirSim52 � Proposed to collect data to be used by machine
learning algorithms
� Cross-platform support (Linux and Windows)
� Open-source
� Enables simulation of a host of physical

phenomena
� Enables the definition of different types of

vehicles

� Underlying platform “Unreal Engine” is not well
supported
� Does not simulate collision response nor advanced

ground interaction models
� Does not simulate various oddities in camera sensors

except those directly available in Unreal engine
� Does not have advanced noise and lens models, which are

needed to simulate the degradation of GPS signals
� Does not simulate advanced wind effects and thermal

simulations for fixed-wing vehicles
Gazebo54 � Includes a physics engine, a host of sensor models

and the ability to create 3-D virtual worlds
� It can be used to build different types of robots

such as manipulator’s arms

� Limited legacy physics engine
� It has limitations in terms of photorealism

RotorS35 � Enables developing and simulating control and
state estimation algorithms for MAVs
� It is based on Gazebo plugins and the Gazebo

physics engine

� Intended for the design of MAVs

Ether55 � Multi-agent simulation
� Evaluation of mission planning models for teams

of UAVs

� The overhead for users to build their own Emods of their
tested algorithms

VATSIM48,49 � Free online platform
� Provides the user with virtual skies, flying all kinds

of aircraft all over the world
� Provides resources, training, and software

� More for pilots training and flying skills improvements not
UAVs testing

Lockheed
Martin
Prepar3D66

� Allows users to create training scenarios across
aviation, maritime and ground domains
� Used by pilots, academic, commercial

organizations and military
� Customizable atmosphere
� Easy configuration of hardware across laptops,

desktops, and multi-monitor environments
� Multiple view and multiplayer

� A commercial software that needs to be purchased

UAV: unmanned aerial vehicle; VATSIM: Virtual Air Traffic Simulation Network; DWR: Drone Watch and Rescue; RMUS: Real-time Multi-UAV
Simulator; MAV: micro aerial vehicles.

Al-Mousa et al. 5

Figure 1 shows the default layout of the Unity main

window. In the middle lies the scene viewer window, where

the items included in the scenario can be visualized by the

programmer. Programmers can edit the locations of objects

in the scene viewer or programmatically. The hierarchy

window on the left contains the names of all the objects

in the scene. When an object is selected in the hierarchy

window, its properties appear in the inspector window to

the right. The properties of the object can be viewed and

edited either via the GUI or via a script. Game objects

needed for any game or the UTSim, in this case, can be

added manually in the main screen or using scripts. Game

objects are the core items making up any Unity project.

They are 2-D or 3-D geometric forms like a sphere or a

square. These objects possess many components, but the

most important component of any game objects is the trans-

form component that controls the scale, 3-D position and

rotation of the object as will be discussed in detail later.

Unity platform customization and configuration

For any object to be part of the Unity environment, it has to

be of type Game-Object. Game-Objects can have many

components, some for rendering and others for physics and

movement control. Scripts are also considered components

of Game-Objects, and that is where most of the customiza-

tion happens as other components of the project are initi-

alized and controlled in scripts. Game-Objects and their

components were utilized in UTSim to implement UAVs

and give them proper physical properties.

The main components that were used are the following:

1. Transform: The transform component of any Game-

Object keeps track of its position. This is used when

implementing basic UAV movements, path plan-

ning, and collision avoidance algorithms.

2. Rigid-Body: This component adds Newtonian phy-

sics rules to a Game-Object. For example, when

implementing UAVs, any UAV can be modeled

as a rigid body affected by gravity force. To change

the UAV vertical position, a vertical upward force

needs to be applied to the UAV. The resulting

movement of UAVs during simulation sessions is

determined based on the resulting summation of

forces affecting the UAV.

3. Colliders: Colliders allow Game-Objects to collide,

and not act as a transparent object. This component

is of a major benefit for collision detection

implementation.

4. Mesh render: This component handles the rendering

of Game-Objects. Without Mesh rendering a Game-

Object will be invisible during simulation sessions.

5. Scripts: Scripts in the Game-Objects must inherit

what is called a mono-behavior class. A typical

Unity Script has the following functions:

� Start: This function is called when the Game-Object

is initialized.

� Update: This is called once in every time-frame.

This function does not get called at a fixed rate, it

depends on the GPU and mostly gets associated with

the rendering and animation.

Figure 1. Unity main window.

6 International Journal of Advanced Robotic Systems

� Fixed-Update: The Fixed-Update function is called

at a fixed rate, with a default of 0.02 seconds; this is

where the physics and control algorithms are

implemented.

The game-object components are illustrated in Figure 2.

The status of the game objects and the values of their attri-

butes can be saved to XML files, for logging purposes. This

enables later study and analysis of the efficiency of certain

algorithms under test.

The simulator architecture

When UTSim starts, it reads multiple configuration files,

shown in Figure 3. These XML files are responsible for

configuring the environment, the UAVs, and the simulation

scenario as follows:

� UAV Config: This XML file contains the configura-

tion of the UAV types that are going to be used.

� Environment Config: The Environment Config

XML file contains all necessary information to initi-

alize the environment and important information to

instantiate and control UAVs such as their type, cur-

rent location, and target location.

� UAV Tasks: This file describes the details of the

simulation scenario in the form of a set of predefined

actions that the UAVs are required to perform.

Actions are a set of orders UTSim is capable of

decoding and performing. The main benefit of using

actions is to be able to build a complicated simula-

tion scenario and flight plans involving multiple

UAVs out of smaller detailed commands. These

actions are decoded in C# into instructions to be

performed.

Once the simulator starts, the GUI starts showing the

desired commands in action. However, for performing

detailed analysis, the simulated data need to be logged.

UTSim provided several types of logs as follows:

� Communication log: This log file keeps track of all

messages communicated between the different enti-

ties in the simulator.

� UAVs log: There is one UAV log generated per

UAV. The log file documents actions encountered

Figure 2. Unity Game-Objects components.

Figure 3. UTSim input configuration and output files.

Al-Mousa et al. 7

from the perspective of that UAV as well as mes-

sages the respective UAV sends or receives.

� Active UAVs log: This log file records the number

of active UAVs during each time step. Collided

UAVs are removed by Unity and are not counted

as part of the active UAVs.

� Satellite log: The satellite log file documents mes-

sages sent/received by the satellite station.

� Ground station log: The ground station log file doc-

uments messages sent/received by each ground

station.

Finally, C# scripts are used to specify how UAVs are

controlled and driven towards targets based on the actions

UTSim supports and algorithms and protocols being tested

or performed by UTSim.

Figure 4 shows the flow of a UTSim simulation session.

First, the XML configuration file is read. Objects such as

UAVs, ground stations, and passive objects are instantiated

based on the XML file data. The XML file contains the

necessary information to initialize these objects; data such

as UAV types, current position, rotation, and speed are set,

and passive objects’ dimensions and locations are initia-

lized as well. Generally, all objects included in any simula-

tion session are instantiated and their attributes are set right

after reading the XML file. Then commands are assigned to

each UAV, these commands can be viewed as a flight plan

for UAVs, just been created and initialized. Execution then

begins. Unity enables a simple time management function-

ality that can be utilized in parallel execution of commands

assigned to each UAV, during execution control algorithms

are applied based on the scenario being run. Data such as

the number of collisions, the number of messages

exchanged can be logged during execution for further anal-

ysis and evaluation.

UTSim supported capabilities

In this section, the proposed UTSim framework and its

capabilities are discussed. These supported capabilities

relate to several areas like the environment, the UAVs, the

communication model and flight planning algorithms. The

requirements are set to not restrict the simulator with a

certain type of UAV or environment. The capabilities also

include reporting and data logging to ease extracting simu-

lated flight data parameters for analysis. UTSim also sup-

ports existing cooperative S&A satellite and ground-based

technologies such as Traffic Alert and Collision Avoidance

System (TCAS) and Automatic Dependent Surveillance-

Broadcast (ADS-B) already used in manned ATC. More-

over, it shall support noncooperative objects (passive

objects) detected via various sensing methods.

General capabilities

The following is a list of general capabilities of UTSim:

1. Custom environment: UTSim enables researchers

to test their algorithms and ideas in various envir-

onments. This could be a city landscape or a rural

area. Professionally built environments could be

acquired from the Unity market store. On the other

hand, researchers have the option to build their own

custom environments from scratch. The simulator

provides options to define the simulation environ-

ment’s area, what objects to be added along with

their location. The physical properties of each

object, and so on. This flexibility allows for creating

a wide range of custom environments.

2. Custom scenarios: UTSim allows the creation of

unlimited testing scenarios. A scenario is defined

using a custom configuration file, which can be used

to configure the number of UAVs in each simulation

session, initialize certain parameters for each UAV,

define the path plan for each UAV via a set of com-

mands that specify what the UAV is tasked to do

during the course of the scenario. Details of the com-

mands will be discussed in the following sections.

These scenario configuration files are XML-

formatted files that are loaded and decoded at the

beginning of each simulation session.

3. Custom algorithms: The simulator is designed to

allow testing of collision S&A, and path planning

algorithms and protocols. This is supported by having

the classes of UTSim written and organized in a mod-

ular way to ease editing and adding custom code.

4. Flexible navigation: The simulator allows specify-

ing a starting point and a destination target for each

UAV. It also supports maneuverability in 3-D and

allows UAVs to be able to move at different speeds.

5. Ability to save and retrieve simulation sessions data:

UTSim is developed for educational and research

purposes. Hence, a researcher or developer is able

to repeatedly test the same scenario with different

algorithms. The simulator is designed to be able to

retrieve data during simulation sessions and save it

for later analysis and evaluation of tested algorithms.

UTSim environment elements

To accurately simulate UAV movements, the environment

where these UAVs are flying is an essential part of the

simulation. The environment needs to be as real as possible.

Taking into account both static objects like buildings and

trees, as well as moving objects like other flying objects

like UAVs and possible birds. The following is a list of the

supported environment elements:

� UAVs: Any number of UAVs can be included, they

could be of various types.

� Passive objects: These are objects that are not able

to communicate with UAVs but exist in the

8 International Journal of Advanced Robotic Systems

surrounding environment. Passive objects could be

static, like buildings and towers, and they may be

moving like birds. These objects are crucial in

order to allow for creating scenes with custom

built landscapes based on the scenario being

simulated.

� Stations: These are a subset of passive objects where

all UAVs can start their missions from and end it at.

� Space communication medium (SCM): This object

serves as the medium for exchanging messages

between different objects in the environment.

� Satellite: This type of object is used to emulate

Satellites and can be used to broadcast information

to UAVs.

� Control ground station (CGS): This object simulates

the use of certain ground stations as control hubs for

UAV traffic control. These CGSs support two-way

communication with UAVs.

� Weather conditions: Weather conditions, such as

wind and rain, can be added to the UTSim environ-

ment. Unity natively takes care of the dynamics

resulting from such weather conditions.

Figure 4. Simulator flow diagram.

Al-Mousa et al. 9

The Simulation environment can include any number of

the previous objects, except the SCM where there is only one.

Details on customizing UTSim are included in Appendix 1.

UAV capabilities

The simulator handles various types of UAVs flying simul-

taneously at different routes. Each of these UAVs has dif-

ferent physical, electrical properties. The following is a list

of the UAV capabilities in UTSim:

1. UAV type configuration: UTSim is capable of

simulating many types of UAVs. UTSim has the

capability to define a UAV type, where each type

shares certain properties like:

� Aircraft type

� Dimensions

� UAV weight

� Sensing range

� Max speed

� Max elevation

Once a UAV type is defined and created these para-

meters take their default values. Users can create multiple

instances of a specific UAV type.

2. UAV Specific Configuration: In addition to the

UAV type parameters, there are some parameters

that are custom per UAV, these can be configured

using the configurable run file before the simulation

session starts and subject to change during the simu-

lation. The following is a sample of such properties:

� Speed

� Current location

� Next location

� Target location

� UAV ID, a unique ID associated with a UAV

during each simulation session.

� Current battery charge

� Command list: The set of actions to be per-

formed during a simulation session for each

UAV.

� Sensing range: This attribute defines the capa-

bility of each UAV to detect other objects

around it. UAVs should be able to detect

objects within this defined distance. This attri-

bute depends on the type of sensors on the

simulated UAV. It is assumed that working

sensors are employed that satisfy such range.

� Objects within sensing range: Every UAV is

able to keep track of all objects within it’s

sensing range. This attribute holds a list of all

objects detected by the UAV and removes

objects from the list when they leave the sen-

sing range.

3. UAV supported actions: Actions, shown in Figure 5,

describe the possible basic elements a UAV is capa-

ble of doing during a simulation session in a human-

readable language. During the simulation, these

actions are decoded and transformed into C# code

that Unity can handle. Actions are loaded for each

UAV from the configurable run XML file. Actions

were chosen to ensure flexibility in creating a wide

variety of simulation scenarios and in a way that

allows their generic usage. The following is a list

of actions that UTSim supports:

� Goto location: This action instructs the UAV

to head towards a point in space, defined by

the 3-D coordinates (x, y, z). During any

simulation session, this command may be

used more than once, so the flight plan is set

using this command.

� Power ON: Every UAV needs to be powered

ON before it can start operating, this com-

mand is used for this purpose.

� Power OFF: This command is used to turn

OFF the UAV during a simulation session.

� Goto station: This command is used to order

UAVs to head to certain stations, making it

easy to plan the path without focusing on the

location of the target stations.

� Wait: This command is used to make UAVs

wait in their current location for a certain

amount of time.

� Set speed: This command is used to set the

speed of a UAV and change it during a simu-

lation session.

Figure 5. UAV actions supported by UTSim. UAV: unmanned
aerial vehicle.

10 International Journal of Advanced Robotic Systems

� Land: This command is used to make a UAV

land at its current location.

� Take OFF: When the UAV is on the ground

or on top of a building and has to start mov-

ing, this command is used to order a UAV to

take off to a certain altitude.

� Recharge: This command is used to recharge

the batteries of electrically powered UAVs.

� Refuel: This command is used to refuel a

UAV assuming that some types of UAVs are

fuel powered.

Messaging protocol capabilities

UTSim communication model. A basic assumption for the

communication of messages is that each message is

assumed to be broadcasted to a radius of n meters, where

n is a configurable parameter per UAV type. And that each

UAV needs to process messages broadcasted within a cer-

tain predefined radius (Rsensing). This parameter (Rsen-

sing) should be configurable per UAV type and speed, as

faster speeds require processing a larger radius.

In order to implement the aforementioned requirement,

the exchange of messages between different objects in the

environment happens through a new object called ‘Space

Communication Medium’ (SCM), shown in Figure 6. This

medium serves as an intermediate broker in serving the

messages. It has access to all messages being sent, and it

is in charge of delivering the messages to the intended

recipient. The role of the SCM is important in modeling

two factors:

� Message fading: In the physical world, as objects

become far from each other messages might fade

to the extent the recipient might not be able to detect

the message. Thus, the SCM checks the distance

between every two objects before deciding to deliver

or drop a message. A more complicated fading

model can be developed by incorporating weather

conditions, such as humidity and wind.

� Message congestion: whenever there is a large num-

ber of objects in the same proximity, it becomes

likely that there will be congestion and messages

could interfere with each other. Thus the simulator

could drop messages based on predefined para-

meters to simulate this effect.

It is also important to mention that UAVs broadcast

periodic messages containing their ID, current position,

speed, and other route-related information. Any UAV can

receive messages from other UAVs in its sensing range,

this feature is valuable in implementing collision avoidance

scenarios.

Supported messages. The simulator supports the exchange of

various types of messages between UAVs. The following

are the supported types of messages:

A. Periodic messages: Periodic messages are required

to be broadcasted by all certified UAVs. With the

period being a system wide configurable parameter.

The format is expandable to allow for adding any

future fields yet being backward compatible with

older versions of the protocol. The proposed version

of the broadcast messages include the following

fields:

� Unique UAV ID

� Current UAV coordinates

� 3-D Directional vector

� Current UAV speed

� Priority level—assigned during certification

and licensing stage. The level is set based

on the cargo type the UAV is expected to

be loading (Urgent Medical Supplies vs.

Pizza)

B. Status change messages: Status change messages are

meant to broadcast important events triggered by a

UAV. They are broadcasted the same way as broad-

cast messages to every object around. The events

that trigger Status Change Messages are:

� Detecting another UAV in range

� Changing altitude

� Changing direction

� Changing speed

C. Request messages: These messages have not been

implemented yet in UTSim. However, request mes-

sages are meant to be communicated between UAVs

and control ground station or even between UAVs

and are triggered when a UAV is asked to perform a

Figure 6. The UTSim communication model.

Al-Mousa et al. 11

certain action. A sample of such actions may

include:

� Change altitude

� Change speed

� Change direction

Request messages need to be acknowledged by the tar-

get UAV that they have been received and whether they

will be able to comply or not.

D. Emergency messages: These are messages broad-

casted when a UAV is in an emergency situation.

Emergency messages get prioritized in handling by

other UAVs and by control stations as well. Initial

Emergency cases include:

� Critical battery levels.

� Flight equipment malfunction.

These messages are to be supported by UTSim.

Data logging and reporting capabilities

The simulator has extensive data logging capabilities. The

logs provided by the simulator can be used for further anal-

ysis and evaluation of used algorithms. Details of output logs

have been covered in ‘The simulator architecture’ section.

Simulation scenarios

To demonstrate the capabilities of the simulator, three

simulation scenarios are presented. The three scenarios are

meant to demonstrate some important features of the pro-

posed simulator, but not all of its capabilities.

First scenario: Basic operation

In the first scenario, the basic functionality and operation of

the UTSim are demonstrated. The scenario introduces the

different types of active and passive objects, as well as the

sensing range for UAVs. As illustrated in Figure 7, three

UAVs (1, 2, and 3) are commanded to fly to three different

target points. The scene also includes two passive objects, a

tall building, and a house. The scenario is set up such that

there will be no collision. While each UAV records events

individually from its own perspective, focus will be on the

journey of UAV 1. Figure 8 shows the timeline of the

messages logged by UAV 1. Initially, at the time (t ¼
0.5), an object is detected to be within the sensing range

of UAV 1, which is the tall building. However, at (t ¼ 4.5)

and object out of range message is logged to denote that the

UAV has lost sight of the tall building. It can also be seen

that there are messages, denoted in blue, sent by UAV 1 at

(t ¼ 5, 10, 15, 20). These are the periodic messages a UAV

periodically broadcasts based on a preconfigured time

interval. At (t ¼ 7.3), UAV 1 detected an object (which

is UAV 2) and almost immediately received a message

from UAV 2, indicating where it is heading. Note that since

for the purpose of this simulation all UAVs created are of

the same type, and consequently have the same sensing

range. Thus each of the UAVs detected each other at the

same time. The same repeats at (t ¼ 9.2) when UAV 1

detects UAV 3. At (t ¼ 12), UAV 2 goes out of range of

UAV 1, thus the object out of range event is logged. After-

ward, UAV 1 detects the house in the lower right corner of

Figure 8 at (t ¼ 13.48). Finally, out of range messages are

logged for UAV 3 and for the house at (t ¼ 14.5) and (t ¼
17.3), respectively.

It is clear that the existence of these logs allows for

detailed checking of what is happening during flight simu-

lation and figure out while studying collisions what exactly

went wrong.

Second scenario: Periodic messages

In this scenario, the concept of periodic update messages is

demonstrated. The scenario is focused on showing the vol-

ume of periodic messages as UAVs take off and land. In the

scenario, 10 UAVs are launched from a single point, but at

different times. They take off in an outward direction, as

shown in Figure 9. They all travel at the same speed.

Because each of the 10 UAVs flies into different directions,

they will never crash. Each of these UAVs has a predefined

Target. The aim of this scenario is to inspect the commu-

nication log which records messages seen by the medium

from all UAVs. The UAVs in this scenario have been con-

figured to broadcast periodic messages every 10 s.

Figure 10 shows the number of update messages between

simulation time (t¼ 0) and (t¼ 1100). The figure aggregates

the number of periodic messages broadcasted every 10 s. It

can be seen that the number of periodic messages increases

steadily between (t¼ 0 and t¼ 130) as UAVs are taking off.

Then during the period where all 10 UAVs are in flight, the

number of periodic messages settles at 10. Finally (at t ¼
560), and as UAVs start reaching their destinations the

Figure 7. First Scenario: Three UAVs with multiple passive
objects. UAV: unmanned aerial vehicle.

12 International Journal of Advanced Robotic Systems

number of periodic messages starts declining. The Commu-

nication log is an excellent, high-level source to know what

has been going on during the simulation.

Third scenario: Scalability and collisions

In this scenario, as shown in Figure 11, the scalability of the

UTSim is demonstrated by attempting to simulate as many

as 1500 UAVs to fly simultaneously. In addition, the pre-

vious two scenarios have been orchestrated carefully to

avoid collision between UAVs. However, in this scenario,

each UAV is given a target and if two UAVs were too close

to each other, they were allowed to crash and collide. This

scenario was repeated multiple times, each time with a

different number of UAVs. Indeed the scenario was run for

these number of UAVs: f20, 40, 60, 80, 100, 150, 200, 300,

400, 500, 750, 1000, 1500g. The area where this scenario

has been conducted was fixed to be 1 Km � 1 Km. The

starting and ending points of the UAVs were completely

random.

Figure 12 shows the absolute number of collisions

recorded for each run with a different number of UAVs.

For example, when there were 750 UAVs, slightly less than

600 UAVs have collided with each other. The figure shows

that the number of collisions is linear and directly propor-

tional to the number of UAVs.

Figure 13, illustrates the percentage of the UAVs that

have ended up colliding out of the initial starting UAVs. It

can be seen that the percentage rises exponentially as the

number of UAVs increases, and afterward, this percentage

saturates. For example, if there are 200 UAVs, half of this

is expected to collide. Of course, it is worth noting that in

this scenario all UAVs travel at the same altitude and all

have no collision avoidance techniques.

Figure 8. Message log for UAV 1 in the first Scenario. UAV: unmanned aerial vehicle.

Figure 9. Second Scenario: 10 UAVs. UAV: unmanned aerial
vehicle.

Figure 10. An aggregate of the number of periodic update
message during 10 s interval.

Al-Mousa et al. 13

Finally, in the same scenario, Figure 14 shows the num-

ber of messages exchanged between UAVs as the number

of UAVs increases. It can be seen that the number of

Update Messages does not increase much as it is tied to

the number of UAVs. However, the Total Number of mes-

sages drastically increases as the number of UAVs

increases. This is due to the interaction between different

UAVs as they come in and out of each others’ sensing

range. The total number of messages is expected to be in

the order of n2, while the number of update messages is in

the order of n, where n is the number of UAVs.

Conclusion

As unmanned aerial systems are continuously increasing

and becoming part of more applications, the embedding

of UAVs in the national aerospace has become a must.

Researchers have started working on the integration of

UAVs in current air traffic. This kind of research is quite

expensive if it is physically performed. The need for simu-

lators that are easy to use and provide researchers with tools

an capabilities to evaluate their proposed algorithms and

retrieve useful information to assist in this task, the need for

such simulators is vital. In this work, a simulator called

UTSim is proposed. The simulator enables researchers to

simulate air traffic integration scenarios and empowers

them with the tools to design, develop and test air traffic

integration and navigation algorithms. UTSim enables

researchers to specify properties of the environment, the

number, and the type of UAVs, in addition to protocols and

algorithms to manage air traffic integration issues like com-

munication, path planning, collision avoidance and more.

The proposed simulator has been explained in detail and

several simulation scenarios have been presented to illus-

trate the capabilities of the simulator.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with

respect to the research, authorship, and/or publication of this

article.

Funding

The author(s) received no financial support for the research,

authorship, and/or publication of this article.

Figure 11. Third Scenario: Colliding UAVs. UAV: unmanned
aerial vehicle.

Figure 12. Number of collided UAVs versus number of total
starting UAVs. UAV: unmanned aerial vehicle.

Figure 13. Percentage of collided UAVs versus total number of
UAVs. UAV: unmanned aerial vehicle.

Figure 14. Number of periodic update and total messages versus
the number of UAVs. UAV: unmanned aerial vehicle.

14 International Journal of Advanced Robotic Systems

ORCID iD

Amjed Al-Mousa https://orcid.org/0000-0002-6427-1008

References

1. Ping JTK, Ling AE, Quan TJ, et al. Generic unmanned aerial

vehicle (UAV) for civilian application—a feasibility assess-

ment and market survey on civilian application for aerial

imaging. In: 2012 IEEE conference on sustainable utilization

and development in engineering and technology (STUDENT),

Kuala Lumpur, Malaysia, October 2012, pp. 289–294. Piscat-

away, NJ: IEEE.

2. Christie KS, Gilbert SL, Brown CL, et al. Unmanned aircraft

systems in wildlife research: current and future applications

of a transformative technology. Front Ecol Environ 2016;

14(5): 241–251.

3. Adams SM and Friedland CJ. A survey of unmanned aerial

vehicle (UAV) usage for imagery collection in disaster

research and management. In: 9th international workshop

on remote sensing for disaster response, vol. 8, Stanford,

CA, USA, September 2011.

4. Achille C, Adami A, Chiarini S, et al. UAV-based photo-

grammetry and integrated technologies for architectural

applications—methodological strategies for the after-quake

survey of vertical structures in Mantua (Italy). Sensors

2015; 15(7): 15520–15539.

5. Yang H, AbouSleiman R, Sababha B, et al. Implementation

of an autonomous surveillance quadrotor system. In: Pro-

ceedings of AIAA unmanned unlimited conference, Seattle,

Washington, 6–9 April 2009, pp. AIAA–2009–2047.

Washington: AIAA.

6. Kontogiannis SG and Ekaterinaris JA. Design, performance

evaluation and optimization of a UAV. Aerosp Sci Technol

2013; 29(1): 339–350.

7. Goerzen C, Kong Z, and Mettler B. A survey of motion

planning algorithms from the perspective of autonomous

UAV guidance. J Intell Robot Syst 2010; 57(1-4): 65.

8. Bonin-Font F, Ortiz A, and Oliver G. Visual navigation for

mobile robots: a survey. J Intell Robot Syst 2008; 53(3):

263–296.

9. Kanellakis C and Nikolakopoulos G. Survey on computer

vision for UAVs: current developments and trends. J Intell

Robot Syst 2017; 87(1): 141–168.

10. Abughalieh KM, Sababha BH, and Rawashdeh NA. A

video-based object detection and tracking system for weight

sensitive UAVs. Multimed Tools Appl 2019; 78(7):

9149–9167.

11. Rawashdeh NA, Rawashdeh OA, and Sababha BH. Vision-

based sensing of UAV attitude and altitude from downward

in-flight images. J Vib Control 2017; 23(5): 827–841.

12. AbouSleiman R, Sababha B, Yang HC, et al. Real-time esti-

mation of UAV attitude from aerial fisheye video. In: Pro-

ceedings of AIAA Infotech@Aerospace conference. Seattle,

Washington, 6–9 April 2009, pp. AIAA–2009–1933.

Washington: AIAA.

13. Federal Aviation Administration. Summary of small

unmanned aircraft rule (Part 107), https://www.faa.gov/uas/

media/Part_107_Summary.pdf (accessed 13 June 2019).

14. Federal Aviation Administration. Waivers to certain small

UAS operating rules, https://www.faa.gov/uas/beyond_the_

basics (accessed 13 June 2019).

15. Richter JL and Aitken MA. United States: FAA issues first

national waiver for beyond-visual-line-of-sight drone opera-

tions, https://bit.ly/2ZtjtfL (accessed 13 June 2019).

16. Wikipedia. Amazon Prime Air, https://en.wikipedia.org/wiki/

Amazon_Prime_Air (accessed 13 June 2019).

17. UPS Pressroom. UPS Tests residential delivery via drone

launched from atop package car, https://bit.ly/2xPMunO

(accessed 13 June 2019).

18. Evan Ackerman. Wing officially launches Australian drone

delivery service, https://bit.ly/2IDm3sK. IEEE Spectrum,

April 2019 (accessed 13 June 2019).

19. Hofstede GJ, De Caluwé L, and Peters V. Why simulation

games work-in search of the active substance: a synthesis.

Simulat and Gaming 2010; 41(6): 824–843.

20. Cai G, Chen BM, Lee TH, et al. Design and implementation

of a hardware-in-the-loop simulation system for small-scale

UAV helicopters. Mechatronics 2009; 19(7): 1057–1066.

21. Unity Technologies. The world’s leading content-creation

engine. 2018, https://unity3d.com/unity (accessed 19 July

2018).

22. Olaverri-Monreal C, Errea-Moreno J, Daz-Álvarez A, et al.

Connection of the SUMO microscopic traffic simulator and

the Unity 3D game engine to evaluate V2X communication-

based systems. Sensors 2018; 18(12): 4399.

23. Chan MT, Chan JT, Chan C, et al. An artificial intelligence-

based vehicular system simulator. Int J Soft Sci Comput Intell

(IJSSCI) 2017; 9(1): 55–68.

24. Chin CS, Kamsani NB, Zhong X, et al. Unity3D serious game

engine for high fidelity virtual reality training of remotely-

operated vehicle pilot. In: 2018 10th international conference

on modelling, identification and control (ICMIC), Guiyang,

China, 2 July–4 July 2018, pp. 1–6. NJ, USA: IEEE.

25. Juliani A, Berges VP, Vckay E, et al. Unity: a general plat-

form for intelligent agents. 2018. arXiv preprint arXiv:1809.

02627.

26. Andaluz VH, Chicaiza FA, Gallardo C, et al. Unity3D-

MatLab simulator in real time for robotics applications. In:

International conference on augmented reality, virtual real-

ity and computer graphics, Otranto, Italy, 15 June–18 June

2016, pp. 246–263. Cham: Springer.

27. Zhang J, Lyu Y, Wang Y, et al. Development of laparoscopic

cholecystectomy simulator based on unity game engine. In:

Proceedings of the 15th ACM SIGGRAPH European confer-

ence on visual media production, London, United Kingdom,

13–14 December 2018. New York: ACM. DOI 10.1145/

3278471.3278474.

28. Jones B, Rohani SA, Ong N, et al. A virtual-reality training

simulator for cochlear implant surgery. Simulat and Gaming

2019; 50(2): 243–258.

Al-Mousa et al. 15

https://orcid.org/0000-0002-6427-1008
https://orcid.org/0000-0002-6427-1008
https://orcid.org/0000-0002-6427-1008
https://www.faa.gov/uas/media/Part_107_Summary.pdf
https://www.faa.gov/uas/media/Part_107_Summary.pdf
https://www.faa.gov/uas/beyond_the_basics
https://www.faa.gov/uas/beyond_the_basics
https://bit.ly/2ZtjtfL
https://en.wikipedia.org/wiki/Amazon_Prime_Air
https://en.wikipedia.org/wiki/Amazon_Prime_Air
https://bit.ly/2xPMunO
https://bit.ly/2IDm3sK
https://unity3d.com/unity

29. Horton BK, Kalia RK, Moen E, et al. Game-engine-assisted

research platform for scientific computing (gears) in virtual

reality. SoftwareX 2019; 9(2019): 112–116.

30. Li B, Gong GH, and Zhao YP. Physically-based facial mod-

eling and animation with Unity3D game engine. In: Asian

Simulation Conference, Melaka, Malaysia, 27–29 August

2017, pp. 393–404. Springer Link.

31. Hu W, Si S, and Wang Y. Chemistry experiment simulation

based on game engine. In: 2018 IEEE/ACIS 17th international

conference on computer and information science (ICIS), Sin-

gapore, 6–8 June 2018, pp. 776–780. Piscataway, NJ: IEEE.

32. Visser A, Dijkshoorn N, Van der Veen M, et al. Closing the

gap between simulation and reality in the sensor and motion

models of an autonomous AR.Drone. In: Proceedings of the

international micro air vehicle conference and flight competi-

tion (IMAV11), vol 108, ’t Harde, the Netherlands, 12–15 Sep-

tember. Delft, Netherlands: Delft University of Technology.

33. Dosovitskiy A, Ros G, Codevilla F, et al. CARLA: an open

urban driving simulator. 2017. arXiv preprint arXiv:1711.

03938.

34. Mueller M, Smith N, and Ghanem B. A benchmark and simu-

lator for UAV tracking. In: European conference on com-

puter vision, Amsterdam, The Netherlands, 8–16 October,

pp. 445–461. Cham: Springer.

35. Furrer F, Burri M, Achtelik M, et al. RotorS—a modular

gazebo MAV simulator framework. In: Koubaa A (ed) Robot

Operating System (ROS). Studies in Computational Intelli-

gence, vol 625. Cham: Springer, 2016.

36. Santana E and Hotz G. Learning a driving simulator. 2016.

arXiv preprint arXiv:1608.01230.

37. Zeng X, Garg SK, Strazdins P, et al. IOTSim: a simulator for

analysing IoT applications. J Syst Architect 2017; 72(2017):

93–107.

38. Manhaes M, Marcusso M, Scherer SA, et al. UUV simulator:

a Gazebo-based package for underwater intervention and

multi-robot simulation. In: OCEANS 2016 MTS/IEEE Mon-

terey, CA, USA, 19–23 September 2016, pp. 1–8. Piscat-

away, NJ: IEEE.

39. Rohmer E, Singh SP, and Freese M. V-REP: a versatile and

scalable robot simulation framework. In: 2013 IEEE/RSJ

international conference on Intelligent Robots and Systems

(IROS), Tokyo, Japan, 3–7 November 2013, pp. 1321–1326.

Piscataway, NJ: IEEE.

40. Hugues L and Bredeche N. Simbad: an autonomous robot

simulation package for education and research. In: Interna-

tional conference on simulation of adaptive behavior, Rome,

Italy, 25–29 September 2006, pp. 831–842. Springer Link.

41. Rohrmeier M. Interactive simulation using virtual systems:

web based robot simulation using VRML. In: Proceedings of

the 32nd conference on Winter simulation, Orlando, Florida,

10–13 December 2000, pp. 1525–1528. USA, CA: Society

for Computer Simulation International.

42. Michel O. Cyberbotics ltd. webots™: professional mobile

robot simulation. Int J Adv Robot Syst 2004; 1(1): 5.

43. X-Plane. https://www.x-plane.com/desktop/how-x-plane-

works/ (accessed 20 August 2018).

44. Blade Element Theory. https://en.wikipedia.org/wiki/Blade_

element_theory (accessed: 20 August 2018).

45. X-Plane. https://www.x-plane.com/press-kit/ (accessed 20

August 2018).

46. FlightGear. http://home.flightgear.org/about/ (accessed 20

August 2018).

47. Microsoft Flight Simulator X. https://en.wikipedia.org/wiki/

Microsoft_Flight_Simulator_X (accessed 20 August 2018).

48. VATSIM. https://www.vatsim.net/about (accessed 25 August

2018).

49. VATSIM. https://en.wikipedia.org/wiki/Virtual_Air_Traf

fic_Simulation_Network (accessed 20 August 2018).

50. Rodriguez-Fernandez V, Menéndez HD, and Camacho D.

Design and development of a lightweight multi-UAV simu-

lator. In: 2015 IEEE 2nd international conference on Cyber-

netics (CYBCONF), Gdynia, Poland, 24–26 June 2015, pp.

255–260. Piscataway, NJ: IEEE.

51. Goktogan AH, Nettleton E, Ridley M, et al. Real time multi-

UAV simulator. In: Proceedings ICRA’03. IEEE international

conference on robotics and automation, 2003, vol 2, Taiwan,

14–19 September 2003, pp. 2720–2726. Piscataway, NJ: IEEE.

52. Shah S, Dey D, Lovett C, et al. AirSim: high-fidelity visual

and physical simulation for autonomous vehicles. In: Hutter

M, and Siegwart R (eds) Field and service robotics. Springer

Proceedings in Advanced Robotics, vol 5. Cham: Springer,

2018.

53. AirSim. https://github.com/Microsoft/AirSim (accessed 25

August 2018).

54. Koenig N and Howard A. Design and use paradigms for

Gazebo, an open-source multi-robot simulator. In: Proceed-

ings of 2004 IEEE/RSJ international conference on Intelli-

gent Robots and Systems, 2004 (IROS 2004), vol. 3. Sendai,

Japan, 28 September–2 October 2004, pp. 2149–2154. Piscat-

away, NJ: IEEE.

55. Lundell M, Tang J, Hogan T, et al. An agent-based hetero-

geneous UAV simulator design. In: Proceedings of the 5th

WSEAS international conference on artificial intelligence,

knowledge engineering and data bases, Madrid, Spain,

15–17 February 2006, pp. 453–457. World Scientific and

Engineering Academy and Society (WSEAS).

56. Garcia R and Barnes L. Multi-UAV simulator utilizing X-

plane. In: Selected papers from the 2nd International Sympo-

sium on UAVs, Reno, Nevada, USA, 8–10 June 2009. Reno,

Nevada: Springer, pp. 393–406.

57. Meyer J, Sendobry A, Kohlbrecher S, et al. Comprehensive

simulation of quadrotor UAVs using ROS and Gazebo. In:

International conference on simulation, modeling, and pro-

gramming for autonomous robots, Tsukuba, Japan, 5–8

November 2012, pp. 400–411. Springer Link.

58. Quigley M, Conley K, Gerkey B, et al. ROS: an open-source

robot operating system. In: ICRA workshop on open source

software, vol. 3, Kobe, Japan, 17 May 2009, p. 5. Piscataway,

NJ.

59. Ganoni O and Mukundan R. A framework for visually realis-

tic multi-robot simulation in natural environment. 2017.

arXiv preprint arXiv:170801938.

16 International Journal of Advanced Robotic Systems

https://www.x-plane.com/desktop/how-x-plane-works/
https://www.x-plane.com/desktop/how-x-plane-works/
https://en.wikipedia.org/wiki/Blade_element_theory
https://en.wikipedia.org/wiki/Blade_element_theory
https://www.x-plane.com/press-kit/
http://home.flightgear.org/about/
https://en.wikipedia.org/wiki/Microsoft_Flight_Simulator_X
https://en.wikipedia.org/wiki/Microsoft_Flight_Simulator_X
https://www.vatsim.net/about
https://en.wikipedia.org/wiki/Virtual_Air_Traffic_Simulation_Network
https://en.wikipedia.org/wiki/Virtual_Air_Traffic_Simulation_Network
https://github.com/Microsoft/AirSim

60. Richards A, Schouwenaars T, How JP, et al. Spacecraft tra-

jectory planning with avoidance constraints using mixed-

integer linear programming. J Guid Control Dynam 2002;

25(4): 755–764.

61. Mujumdar A and Padhi R. Evolving philosophies on auton-

omous obstacle/collision avoidance of unmanned aerial vehi-

cles. J Aeros Comp Inf Com 2011; 8(2): 17–41.

62. Fu Y, Zhang Y, and Yu X. An advanced sense and collision

avoidance strategy for unmanned aerial vehicles in landing

phase. IEEE Aero El Sys Mag 2016; 31(9): 40–52.

63. Sahawneh LR, Mackie J, Spencer J, et al. Airborne radar-based

collision detection and risk estimation for small unmanned

aircraft systems. J Aerosp Inf Syst 2015; 12(12): 756–766.

64. Fu Y, Yu X, and Zhang Y. Sense and collision avoidance of

unmanned aerial vehicles using Markov decision process and

flatness approach. In: 2015 IEEE International Conference

on Information and Automation, Lijiang, China, 8–10 August

2015, pp. 714–719. Piscataway, NJ: IEEE.

65. Aerospace Blockset. https://www.mathworks.com/help/

aeroblks/index.html;jsessionid¼7f23

b5dc0d517d02eb01d5c663d3 (accessed 20 August 2018).

66. Lockheed Martin Prepar3D. https://www.prepar3d.com

(accessed 25 August 2018).

67. Wikipedia contributors. Unity (game engine)—Wikipedia,

the free encyclopedia, https://en.wikipedia.org/w/index.php?

title¼Unity_(game_engine)&oldid¼850638164 (2018,

accessed 19 July 2018).

68. Wang Z, Kim B, Kobayashi H, et al. Agent-Based Modeling

and Simulation of Connected and Automated Vehicles Using

Game Engine: A Cooperative On-Ramp Merging Study.

CoRR. arXiv preprint arXiv:1810.09952. 2018 October 23.

https://arxiv.org/abs/1810.09952

Appendix 1

Simulator customization

Introducing new drone types. UTSim allows users to create their own type of drones, with custom properties. Users can edit

the properties of the GameObject ‘basicDrone’ in the Unity environment to match the required properties. Alternatively, if

users needed to create multiple drone types, they can copy the “basicDrone” GameObject and rename it (e.g.

“basicDrone1”) and customize the new object as needed.

Implementing flight scenarios. UTSim gives users the ability to create custom scenarios. Each scenario needs an XML-based

configuration file. In the configuration file the objects, whether they are UAVs or static objects (like trees or buildings) are

created. The XML configuration file gives the user the ability to instantiate drones in the session and specify the type and

name of that drone instant and then initialize the attributes related to that instant. Also, when creating a UAV, a flight plan

on how and where to move is associated with that UAV.

The following is part of the configuration file used to run the first test case scenario, described in the ‘Stimulation

scenarios’ section and shown in Figure 7. The configuration file creates 5 objects: 3 UAVS and 2 static objects. The code

for UAV 1 and static object 1 is shown below.

When creating the UAVs, its position in 3-D space is defined, then its scale and rotation, as shown in the comments in the

code. Next, the UAV is assigned a unique name and is associated with a specific type of Drones ‘basicDrone.’ By default, the

instance inherits all the default values of the drone type. After that, the command section is responsible for defining the flight

plan for drone 1. Through a list of commands, the speed is set and then a specific direction is given to the drone. The list

could contain as many commands as needed. The list of possible actions is explained in the ‘UAV supported actions’ section.

It can be seen also that the instance can override values inherited from the type. Finally, the two static objects are defined.

Their position, scale, and rotation are set. Also, names are assigned and the type of the static objects are defined.

An example of scenario configuration file for UTSim:

<?xml version¼"1.0" encoding¼"utf-8"?>

<!-- Define an Array of list of objects in the simulation -->
<ArrayOfObjectStatexmlns:xsi¼"http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd¼"http://www.w3.org/2001/XMLSchema">

<!-- Define a UAV Object UAV 1 -->
<!-- ========================== -->
<objectStatexsi:type¼"uavObjectState">

<!-- Initialize the Position of UAV 1 -->
<position>

<x>-5</x> <y>50</y> <z>16.6</z>
</position>

Al-Mousa et al. 17

https://www.mathworks.com/help/aeroblks/index.html;jsessionid=7f23b5dc0d517d02eb01d5c663d3
https://www.mathworks.com/help/aeroblks/index.html;jsessionid=7f23b5dc0d517d02eb01d5c663d3
https://www.mathworks.com/help/aeroblks/index.html;jsessionid=7f23b5dc0d517d02eb01d5c663d3
https://www.mathworks.com/help/aeroblks/index.html;jsessionid=7f23b5dc0d517d02eb01d5c663d3
https://www.prepar3d.com
https://en.wikipedia.org/w/index.php?title=Unity_(game_engine)&oldid=850638164
https://en.wikipedia.org/w/index.php?title=Unity_(game_engine)&oldid=850638164
https://en.wikipedia.org/w/index.php?title=Unity_(game_engine)&oldid=850638164
https://en.wikipedia.org/w/index.php?title=Unity_(game_engine)&oldid=850638164

<!-- Initialize the Scale of UAV 1 -->
<scale>

<x>1</x> <y>1</y> <z>1</z>
</scale>
<!-- Initialize the Rotation of UAV 1 -->
<rotation>

<x>0</x> <y>0</y> <z>0</z>
</rotation>

<!-- Initialize the Name of UAV 1 -->
<name>drone 1</name>

<!-- Define the type of the Drone -->
<prefabName>basicDrone</prefabName>

<!-- A Set of Commands assigned to the UAV 1 -->
<cmdList>

<string>setSpeed 5</string>
<string>move x88 y50 z-76.4</string>

</cmdList>

<!-- Define Data for the UAV 1 -->
<uavData>

<KeyValuePairOfStringString>
<Key>mass</Key>
<Value>4</Value>

</KeyValuePairOfStringString>
</uavData>

</objectState>

<!-- Define a UAV Object UAV 2 & 3 -->
<!--..........-->

<!-- Define a Passive Object 1 -->
<!-- ========================== -->
<objectStatexsi:type¼" visibleObjectState">

<!-- Initialize the Position of Obj 1 -->
<position>

<x>0</x> <y>50</y> <z>0</z>
</position>

<!-- Initialize the Scale of Obj 1 -->
<scale>

<x>4</x> <y>100</y> <z>4</z
</scale>
<!-- Initialize the Rotation of Obj 1 -->
<rotation>

<x>0</x> <y>0</y> <z>0</z>
</rotation>

<!-- Initialize the Name of Obj 1 -->
<name>Passive Object 1</name>

<!-- Define the type of the Obj 1 -->
<prefabName>Cube</prefabName>

</objectState>

<!-- Code to configure Passive Obj 2 -->
<!--..........-->

</ArrayOfObjectState>

18 International Journal of Advanced Robotic Systems

Implementing custom S&A algorithms. UTSim allows for implementing custom S&A algorithms. The core of such algo-

rithms is related to translation in the position of the UAVs and the velocity by which they move in the 3D space. These can

be defined as part of the Move action of any UAV. In the UTSim, the function decode() is responsible for decoding the

actions dictated by the user in the simulation configuration, including the Move. Within the scope of the Move action, the

algorithm has access to information provided by the assumed sensors, which are crucial to the decision-making process. In

the current native version of the simulator, the Move action code employs a simple PID controller to provide a force

responsible for moving the UAV from the current position to the target position. The force decreases gradually as the UAV

approaches the destination.

When a custom sense and avoid algorithm is to be implemented, the code should be part of decoding the Move action

in the decode() function. Users can alter the decision to move the UAVs based on the S&A algorithm being

implemented.

Al-Mousa et al. 19

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 266
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 175
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50286
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 266
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 175
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50286
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 900
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 175
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50286
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000530061006700650020007300740061006e0064006100720064002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e006700200077006500620020005000440046002000660069006c00650073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760037002e0030002e00200043007200650061007400650064002000620079002000540072006f00790020004f00740073002000610074002000530061006700650020005500530020006f006e002000310031002f00310030002f0032003000300036002e000d000d003200300030005000500049002f003600300030005000500049002f004a0050004500470020004d0065006400690075006d002f00430043004900540054002000470072006f0075007000200034>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [288 288]
 /PageSize [612.000 792.000]
>> setpagedevice

