
Cloud-Based Reconfigurable Hardware Accelerator
for the KNN Classification Algorithm

Awos Kanan
Dept. of Computer Engineering

Princess Sumaya University for Technology
Amman 11941, Jordan

a.kanan@psut.edu.jo

Amal Taha
Dept. of Computer Engineering

Princess Sumaya University for Technology
Amman 11941, Jordan

ama20180264@std.psut.edu.jo

Abstract—The K-Nearest Neighbor algorithm is a supervised
machine learning algorithm that is used for classification prob-
lems. The execution time of this algorithm could be extremely
high, especially for huge and high-dimensional datasets. The
objective of this work is to design and implement efficient parallel
hardware architectures to accelerate the KNN classifier. The
proposed architectures are implemented using FPGA on Intel
DevCloud. Experimental results show that the proposed hard-
ware implementation of the algorithm is 10.7 times faster than
the software implementation with 96.6% classification accuracy
for a benchmark classification dataset.

Index Terms—KNN Classifier, OpenAPI, DevCloud, DPC++,
Hardware Acceleration, FPGAs, Image Classsification.

I. INTRODUCTION

Data mining is concerned with finding useful information
from large datasets. Among the high-level tasks that data min-
ing typically involves are classification, regression, clustering,
summarizing, dependency modeling, and detecting changes
and deviations [1], [2]. The K-Nearest Neighbor (KNN) clas-
sification algorithm [3] is one of the most popular algorithms
that is widely used in many machine learning and data mining
applications. Despite the simplicity of this algorithm, it could
be heavy for the hardware when used for classifying huge
and high-dimensional datasets [4]. The classification model
of the KNN algorithm involves two main kernels that are
computationally intensive; the distance calculation unit, and
the sorting unit. Enhancing the execution time of these kernels
is of great interest to enhance the overall performance of the
KNN algorithm.

Hardware acceleration is the process of using specialized
hardware architectures to execute computationally-intensive
tasks to speed up the overall execution time of the task to
be accelerated. Typically, Graphical Processing Units (GPUs),
Field Programmable Gate Arrays (FPGAs), and Application
Specific Integrated Circuits (ASICs) are widely used for this
purpose with GPUs being dominant in this field. FPGAs are
more flexible and energy-efficient compared to GPUs while
being much cheaper than ASICs. As a result of the increasing
demand on high performance computing using FPGAs, new
generations of hardware design platforms using High-Level
Synthesis (HLS) tools are being introduced to automatically
synthesize high-level descriptions of digital systems [5], [6].

Several FPGA-based hardware accelerators have been pro-
posed for the KNN classifier. In [7], the authors implemented
the KNN algorithm using reconfigurable hardware architecture
for text classification with a speedup of 15 over a single
CPU and 1.5 over a multi-threaded CPU. Another hardware
architecture to accelerate the KNN classifier on mobile devices
has been proposed in [8] that is 127 times faster than its
software counter-part. The authors in [9] proposed a Software
Defined Networking architecture to secure smart homes using
the KNN classifier for malicious traffic detection and the
parallel processing power of FPGAs.

Recent advances in hardware acceleration services provided
on the cloud result in more interest in cloud-based FPGA
acceleration of machine learning and data mining algorithms
including the KNN classifier [10]. The main advantage of
using FPGAs on the cloud, compared to the aforementioned
classical approaches, is the unlimited access to huge capa-
bilities, including high memory bandwidths, for implementing
and testing hardware acceleration architectures. The aim of this
paper is to accelerate the KNN classification algorithm using
the recent high-level language Data Parallel C++ (DPC++)
that is used for cross-architecture and heterogeneous hardware
implementations [11]. Detailed hardware implementations of
the main computational kernels of the algorithm along with
experiemntal results and comparisons with software imple-
mentations, all on the cloud, are provided.

The remaining of this paper is organized as follows; Section
II provides background information on the KNN classification
algorithm and the used acceleration platform. The proposed
architectures along with implementation methodologies are
discussed in Section III. Comparisons and experimental results
are presented in Section IV. Finally, Section V concludes the
paper.

II. BACKGROUND

A brief background on the KNN classification algorithm
and the cloud-based implementation platform and tools used
to accelerate this algorithm are discussed in the following
subsections.

14th IEEE International Conference on Computational Intelligence and Communication Networks

978-1-6654-8771-9/22/$31.00 ©2022 IEEE
DOI: 10.1109/cicn.2022.53

308

20
22

 1
4t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 a
nd

 C
om

m
un

ic
at

io
n

N
et

w
or

ks
 (C

IC
N

) |
 9

78
-1

-6
65

4-
87

71
-9

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

CI
CN

56
16

7.
20

22
.1

00
08

34
3

Authorized licensed use limited to: Princess Sumaya University for Technology. Downloaded on May 12,2024 at 13:01:42 UTC from IEEE Xplore. Restrictions apply.

A. K-Nearest Neighbor Algorithm

The KNN classification algorithm is an efficient and easy
to implement classifier that relies on similarity measures [12]
such as Manhattan, Euclidean, and Cosine distances to classify
data samples of different machine learning datasets. The
Euclidean distance, for instance,is the straight-line segment
between two points in a mutli-dimensional coordinates space.
The algorithm observes the whole dataset differences and then
takes the K closest of them to the test data.

Fig. 1. Example KNN Classification with two classes A and B.

In Fig. 1, we have two classes A and B that are considered
training data since they are already labeled. The blue square
represents an unclassified, or test, data that we need to measure
its similarity to either class A or B. We can find that K = 3
gives us a circle that covers two elements from class A and one
from B, thus we predict that the tested entry will be classified
as class A. Several approaches can be used to select the value
of K [13]. If the range of values to select from is not big, we
can try every possible value and select the one that maximizes
the classification accuracy.

B. Intel OneAPI DPC++ Platform

Intel DevCloud is a modern innovation sandbox that
provides powerful tools for developers to program cross-
architecture applications on different platforms they provide
on the cloud such as; OpenVino, HLS tools, OpenCl, RTL,
and OneAPI. One of the most interesting advantages of using
Intel DevCloud is that it has free trial with unlimited access
to nodes with CPUs, GPUs, and FPGAs. Intel DevCloud is a
highly scalable sandbox that is easy to learn and use. The new
DPC++ extension is one of the powerful tools Intel DevCloud
provides to design, implement, and analyze an FPGA-based
solution. Developers can login to the cloud through direct SSH
connection or through a Jupyter Notebook that Intel provides
online for application development and acceleration [11].

OneAPI is a platform with several toolkits that are provided
by Intel as part of DevCloud. DPC++ is one of these toolkits.
It is a high-level cross-architecture language that is inherited

from C++ and uses SYCL 2020 extensions with more ad-
vanced features. SYCL 2020 is another high-level language
that is used to improve the design of multiple heterogeneous-
systems. The Intel OneAPI DPC++/C++ compiler maps the
instructions of high-level code into hardware operations and
controls this mapping to utilize available hardware resources
efficiently [14].

III. METHODOLOGIES

A. Memory and Device Management in DPC++

To start using DPC++ for FPGA-based acceleration, we
need to include some necessary header files, select the device
that will be used, and submit it to the job queue. Two main
ways are available for memory management while offloading
the computations using DPC++; Unified Shared Memory, and
Buffers and Accessors. Unified Shared Memory is a pointer-
based method that uses a shared memory between the host
and the kernel such that both devices use the same data
objects. Buffers and Accessors, on the other hand, is a new
powerful way of interacting with the device and handling data
dependencies. It uses SYCL extensions to create a buffer and
an accessor for each object where the buffer holds the data
to be managed while accessors have control over the buffer
objects. This Method is the one that is used to describe the
proposed architectures in this work.

There are four main methods that are used to invoke the
kernel (FPGA device):

• Single Task: Perform one task on the device kernel with
no parallelism.

• Parallel Kernel: Invoke the kernel N times at the same
time to allow for parallelism on the device. Not neces-
sarily all N operations will be executed at the same time.

• ND-Range Kernel: This method uses the same syntax of
Parallel Kernel. However, it allows for better performance
by mapping executions to hardware resources. This hap-
pens by grouping each execution into a different compute
unit on the kernel to achieve occupancy and parallelism.

• Hierarchical Kernel: This method has the same idea and
functionality of the ND-Range except that it is repre-
sented in more hierarchical way for better description of
the code.

B. The Proposed Accelerator

High-Level acceleration Platforms, including DPC++, allow
developers to write high-level programs that run on a host
computer with the capability to offload slow portions of the
code to some acceleration devices such as GPUs and FPGAs.
Fig. 2 shows a high-level design of the proposed FPGA-based
accelerator for the KNN classification algorithm.

The main advantage of the used acceleration approach lies
in abstracting the code and making it easier to interact with
the FPGA without the need to explicitly define each pin and
module the same way in Hardware Description Languages
(HDLs), thus implementing more complex designs with less
time and efforts with the ability to easily debug and separate
host and kernel codes.

309Authorized licensed use limited to: Princess Sumaya University for Technology. Downloaded on May 12,2024 at 13:01:42 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Block Diagram of the Proposed KNN Architecture.

At first, we have a dataset with training and testing data
that are read and saved in vectors inside the heap memory of
the host device so that we do not overwhelm the FPGA with
massive amount of reading and writing operations. The vectors
are sent to the kernel memory through buffers and accessors
that allow us to separate host and kernel RAMs. The most
critical and time consuming task is data transfer to the kernel.
The proposed acclerator has two main units inside the kernel;
the similarity distance unit and the sorting unit.

A dataset that consists of a large number of samples with
many features can be implemented using vectors or 2D arrays.
Since it is more efficient to deal with vectors in DPC++, we
decided to convert input datasets into 1D vectors as show in
Fig. 3.

Fig. 3. Converting a 2D array to 1D vector.

As shown if Fig. 4, multiple training data samples are
fed to the distance calculation unit in parallel. The distance
between training sample cells and the current test sample is
then calculated. This unit is implemented using a parallel for
loop at the aim of performing as much of the computations
in the loop iterations in parallel as possible. What happens
inside the kernel depends on the hardware specifications of
the FPGA. Hence, it is very important to refer to analysis
reports of the hardware image to analyze the performance
of the accelerator to decide what to do to achieve better

performance. For Euclidean distance, the loop iterates through
all features of data samples, as they represent the dimensions
for the KNN algorithm. We add the differences on each
dimension and multiply them with their value to get their
square. The result of these calculations are stored inside the
initial vector that’s submitted to the buffer as an input. The
result vector is the RAM that stores the resulted distance of
each of the entries and deliver it back to the original vector that
was submitted to the kernel with write accessor permission.
The proposed distance calculation unit supports two more
similarity measures; Manhattan distance and Cosine distance.

Fig. 4. Parallel distance calculation unit.

The KNN algorithm relies on sorting operations to find the
nearest neighbors. Sorting Networks is a common principle
in designing sorting hardware algorithms. One of them is the
Merge Sort algorithm [15] that performs sorting by splitting
the data into powers of 2 packet sizes and keeps doing this
until the packet size is 2 then swaps the maximum element
with the minimum element if the maximum takes the smaller
index. When the packet size is larger, it sorts it in an increasing
order and keeps doing this in parallel for the packets until the
whole list is sorted. Merge Sort Sequence is a way to merge
two sorted lists into one that is sorted too, as shown in the
example in Fig. 5. The proposed accelerator relies on using
parallel for constructs to implement the sorting operation on
the resulting vectors in parallel.

Fig. 5. Merge Sort Example [16].

IV. EXPERIMENTAL RESULTS

The complete KNN algorithm is implemented using DPC++
high-level language, targeting Arria 10 GX FPGA device, and

310Authorized licensed use limited to: Princess Sumaya University for Technology. Downloaded on May 12,2024 at 13:01:42 UTC from IEEE Xplore. Restrictions apply.

compared to a Python implementation on the same cloud plat-
form (Intel DevCloud). As discussed in the previous section,
the complete KNN algorithm is implemented in a way so
that some parts of the code are executed on the host while
offloading the remaining computationally-intensive parts to the
FPGA kernel.

Results reported in this section are based on a OneAPI
dataset that is provided with the platform documentation for
testing purposes. The dataset has 16,000 training samples and
4,000 test samples, five features all represented as real numbers
larger than 0, and five labels (from 0 to 4) [17].

In addition to comparing the complete DPC++ and Python
implementations of the KNN algorithm, we provide a detailed
comparisons for the main kernel units; the distance calculation
unit and the sorting unit. Table I shows the execution times of
both FPGA and Python implementations of the distance calcu-
lation unit with three different similarity measures (Euclidean,
Manhattan, and Cosine distances), the sorting unit, and the
complete KNN algorithm.

TABLE I
EXECUTION TIMES FOR THE FPGA AND PYTHON IMPLEMENTATIONS.

Unit
Execution Time

(ms)
Proposed Python

Distance - Euclidean 0.83 70
Distance - Manhattan 0.97 76
Distance - Cosine 2 125
Sorting 231 28
Complete KNN 31,058 334,279

From the above table, it is obvious that the proposed FPGA
implementations of the distance calculation unit perform the
required computations in much less time compared to the
Python implementations for all similarity measures. Fig. 6
shows the speedup achieved for each of the three measures.
The lowest speedup is achieved with the Cosine distance due
to the required more complex operations, including division,
compared to the other two measures, and the accompanying
overhead of creating buffers and accessors.

The speedup achieved for the proposed sorting unit is
around 8x, which is much less than the speedups achieved
for the proposed distance calculation units. This is due to data
dependencies in the proposed sorting unit that limits the degree
of parallelization of the loops that are offloaded to the kernel.

The complete implementations of the algorithm are based on
the recommended value of K = 126, which is the square root
of the dataset size [13]. The overall speedup of the proposed
implementation over the Python implementation is 10.7x with
classification accuracy of 96.675% for the benchmark dataset
described earlier in this section.

The utilization of the FPGA resources occupied by the
complete implementation of the KNN algorithm are shown in
Table II. As shown in this table, the proposed implementation
uses small portions of the available resources, which makes it

Fig. 6. Speedup for different similarity measures.

area and power efficient while being scalable to higher degrees
of parallelism and larger datasets.

TABLE II
UTILIZATION OF FPGA RESOURCES.

Resource Utilization
LookUp Tables (LUTs) 49752 (6%)
Flip flops (FFs) 60654 (4%)
Block RAMs 292 (11%)
Digital Signal Processing (DSPs) 19 (1%)

V. CONCLUSION

The work presented in this paper focuses on using the
cloud-based development platform DevCloud OneAPI, pro-
vided by Intel, to accelerate the KNN classification algorithm
using FPGAs. The emerging DPC++ high-level language is
used to implement the complete algorithm. The proposed
implementation achieves better performance compared to a
Python software implementation, on the same cloud platform,
with high classification accuracy using small portions of the
available hardware resources.

REFERENCES

[1] S.-H. Liao, P.-H. Chu, and P.-Y. Hsiao, “Data mining techniques and
applications–a decade review from 2000 to 2011,” Expert systems with
applications, vol. 39, no. 12, pp. 11 303–11 311, 2012.

[2] J. F. Pinto da Costa and M. Cabral, “Statistical methods with applications
in data mining: A review of the most recent works,” Mathematics,
vol. 10, no. 6, p. 993, 2022.

[3] K. Taunk, S. De, S. Verma, and A. Swetapadma, “A brief review of
nearest neighbor algorithm for learning and classification,” in 2019
International Conference on Intelligent Computing and Control Systems
(ICCS). IEEE, 2019, pp. 1255–1260.

[4] J. Masek, R. Burget, J. Karasek, V. Uher, and M. K. Dutta, “Multi-
gpu implementation of k-nearest neighbor algorithm,” in 2015 38th
International Conference on Telecommunications and Signal Processing
(TSP). IEEE, 2015, pp. 764–767.

[5] A. A. Al-Aghbari and M. E. Elrabaa, “Cloud-based fpga custom
computing machines for streaming applications,” Ieee Access, vol. 7,
pp. 38 009–38 019, 2019.

[6] C. Kachris and D. Soudris, “A survey on reconfigurable accelerators
for cloud computing,” in 2016 26th International conference on field
programmable logic and applications (FPL). IEEE, 2016, pp. 1–10.

311
Authorized licensed use limited to: Princess Sumaya University for Technology. Downloaded on May 12,2024 at 13:01:42 UTC from IEEE Xplore. Restrictions apply.

[7] K. R. Townsend, S. Sun, T. Johnson, O. G. Attia, P. H. Jones, and J. Zam-
breno, “k-nn text classification using an fpga-based sparse matrix vector
multiplication accelerator,” in 2015 IEEE International Conference on
Electro/Information Technology (EIT). IEEE, 2015, pp. 257–263.

[8] M. A. Mohsin and D. G. Perera, “An fpga-based hardware accelerator
for k-nearest neighbor classification for machine learning on mobile
devices,” in Proceedings of the 9th International Symposium on Highly-
Efficient Accelerators and Reconfigurable Technologies, 2018, pp. 1–7.

[9] H. Gordon, C. Park, B. Tushir, Y. Liu, and B. Dezfouli, “An efficient sdn
architecture for smart home security accelerated by fpga,” in 2021 IEEE
International Symposium on Local and Metropolitan Area Networks
(LANMAN). IEEE, 2021, pp. 1–3.

[10] A. Lu, Z. Fang, N. Farahpour, and L. Shannon, “Chip-knn: A config-
urable and high-performance k-nearest neighbors accelerator on cloud
fpgas,” in 2020 International Conference on Field-Programmable Tech-
nology (ICFPT). IEEE, 2020, pp. 139–147.

[11] J. Fuentes, D. López, and S. González, “Teaching heterogeneous
computing using dpc++,” in 2022 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW). IEEE, 2022,
pp. 354–360.

[12] S. Santini and R. Jain, “Similarity measures,” IEEE Transactions on
pattern analysis and machine Intelligence, vol. 21, no. 9, pp. 871–883,
1999.

[13] S. Zhang, X. Li, M. Zong, X. Zhu, and D. Cheng, “Learning k for knn
classification,” ACM Transactions on Intelligent Systems and Technology
(TIST), vol. 8, no. 3, pp. 1–19, 2017.

[14] R. Nozal and J. Bosque, “Straightforward heterogeneous computing with
the oneapi coexecutor runtime. electronics 2021, 10, 2386,” 2021.

[15] U. A. Korat, P. Yadav, and H. Shah, “An efficient hardware imple-
mentation of vector-based odd-even merge sorting,” in 2017 IEEE 8th
Annual Ubiquitous Computing, Electronics and Mobile Communication
Conference (UEMCON). IEEE, 2017, pp. 654–657.

[16] “Merge sort,” (Date last accessed 10-October-2022). [Online]. Available:
http://selkie.macalester.edu/csinparallel

[17] “Oneapi dataset,” (Date last accessed 10-October-2022). [Online].
Available: https://docs.oneapi.io/versions/latest/onedal/examples/cpp

312
Authorized licensed use limited to: Princess Sumaya University for Technology. Downloaded on May 12,2024 at 13:01:42 UTC from IEEE Xplore. Restrictions apply.

