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Abstract: Lingual ultrasound imaging is essential in linguistic research and speech recognition.
It has been used widely in different applications as visual feedback to enhance language learning
for non-native speakers, study speech-related disorders and remediation, articulation research and
analysis, swallowing study, tongue 3D modelling, and silent speech interface. This article provides
a comparative analysis and review based on quantitative and qualitative criteria of the two main
streams of tongue contour segmentation from ultrasound images. The first stream utilizes traditional
computer vision and image processing algorithms for tongue segmentation. The second stream
uses machine and deep learning algorithms for tongue segmentation. The results show that tongue
tracking using machine learning-based techniques is superior to traditional techniques, considering
the performance and algorithm generalization ability. Meanwhile, traditional techniques are helpful
for implementing interactive image segmentation to extract valuable features during training and
postprocessing. We recommend using a hybrid approach to combine machine learning and traditional
techniques to implement a real-time tongue segmentation tool.

Keywords: tongue contour tracking; medical imaging analysis; computer vision; lingual ultrasound;
machine learning; image segmentation

1. Introduction

The main objective of this review is to evaluate existing methodological approaches
for tongue contour tracking using ultrasound images in speech recognition applications.
The paper also describes research insights, existing gaps, and future research directions [1].
We consider the mean sum of distances (MSD) as the primary evaluation criterion for the
quantitative analysis of tongue segmentation. MSD is the standard measure of tongue seg-
mentation in research as it considers the variation of tongue length, and it is adopted widely
in tongue segmentation publications. For the qualitative analysis, we consider algorithm
usability, image quality, and the shape consistency of the segmented tongue contour.

Studying tongue movement during speech is essential to the understanding of hu-
man articulation. Different approaches are used to study speech; some rely on a single
sensor [2–6], and others use hybrid techniques [7–9]. Due to medical imaging modalities
advancement and impressive capabilities, linguistic researchers are relying on the medical
ultrasound system to capture tongue motion during speech [10]. Ultrasound imaging is
considered the most efficient methodology in terms of safety and portability. However,
magnetic resonance imaging (MRI) has a better resolution, and it can provide more infor-
mation about the soft tissues [11], vocal tract, and craniofacial structure [12,13]. MRI is
used for real-time image acquisition [11,14,15] to visualize the vocal tract either in 2D or 3D
orientation [16,17] and enhance the speech analysis. However, MRI is huge in size and very
expensive compared to ultrasound. It requires a special arrangement and a long scanning
time, making it impractical for most of the day-to-day uses of speech analysis to limit its
application for particular research or clinical studies.
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On the other hand, X-ray [18–20] and CT [21–25] systems are cheaper than MRI, they
have a reasonable resolution, and they have many applications as well. X-ray is used
for tongue contour extraction [26,27]; it is also used for tongue contour image synthesis
to create articulation copy [28] or combining physiological models to fit X-ray images.
An X-ray system is also beneficial for capturing images of the whole vocal tract [29] and
nonrigid articulatory structures [30]. CT scan has a wide variety of applications compared
to conventional X-rays. CT scan is used in clinical studies of oral-cavity-related disorders
such as sleep apnea [22,31]. CT images are also used to estimate the tongue volume within
the oral cavity [32–35]. Furthermore, CT is applied in advanced surgical procedures as it is
beneficial for image registration [36]; augmented reality and CT images are also combined
to guide transoral robotic surgery [37]. In addition, CT-mapped 3D images of different
tongue types have been used in clinical applications of tongue cancers [38]. However, CT
and X-rays are larger in size compared to ultrasound, and they have a radiation danger
which requires a strictly yearly radiation dose limit to prevent harmful radiation for humans.
At the same time, ultrasound is safer and has no radiation danger to the user.

In addition to the medical imaging systems, biosignal sensors are also utilized for
speech analysis and related studies. Types of biosignal sensors [8] are electromagnetic
articulatory (EMA), permanent magnet articulography (PMA), electropalatography (EPG),
electromyography (EMG), electroencephalography (EEG).

EMA [39–41] is useful to localize the movement within the vocal tract by using elec-
tromagnetic transmitter coils to track the position of the attached electromagnetic sensors
on the tongue, lips, and jaw. EMA may provide either a 2D or 3D landmark localization
in milliseconds, but the system operation is complex and uncomfortable to be used in all
cases on a daily basis; it might be more usable for conducting clinical studies at research
centres. In ultrasound research, EMA data are used to build a prediction machine learning
model to guide ultrasound tracking to minimize the effect of missing data.

On the other hand, PMA [42–46] is a technique to capture articulator displacement
by using a permanent magnet on the tongue and detecting the magnetic signal using a
wearable sensor. It is useful for speech recognition tasks, and the reported word detection
accuracy is around 90% [42]. Unlike EMA, PMA does not have wires and has a reverse
transmitter–receiver arrangement to make it more convenient [8]. However, PMA sensors
configuration is not convenient, and it is difficult to maintain the same position reference
for all cases.

EPG is used for tongue tracking and speech therapy [8,47]. Moreover, EPG information
is also applied to get an accurate image registration by a CT scanner [35]. Furthermore,
EPG can be combined with audio signals for speech generation and speech enhancement
applications [48]. EPG uses a hard plate beneath the tongue to detect the contact between
the tongue and the array of sensors in the plate. The hard plate requires a specialized
dentist to get a measure as it should be custom-designed for each patient. However, EPG
can give some information about the tongue motion, but it is not practical, and limited data
can be acquired from it compared to ultrasound.

EMG for speech recognition [49–51] is more convenient and safer than EMA, PMA
and EPG as it uses surface electrodes on the face without any invasive measures. EMG is a
system that detects the muscles’ electric activity and its nerves’ biosignals [52]. The detected
signals can give an indication of the muscles’ health [53]. However, in the case of speech
recognition, the muscles’ movement can indicate the speech behaviour and its relationship
with the tongue muscle motion [54]. Moreover, EMG can be used to translate hand gestures
for a speech to help people with speech impediments [55].

Studying brain electrical activity using EEG is useful for speech analysis. The acoustic
sound stimulates the auditory cortex in the brain which generates electrical signals that
can be detected by the electrodes or small metal plates attached to the scalp. Different
research studies have proposed to analyze EEG signals and extract the relationship between
brain signals and speech behaviour [56–59]. Although EEG can provide information
about the speech patterns, the nature of the EEG signal is complex and susceptible to
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noise, which makes the part of the EEG complex signal relating to the auditory system
difficult to be separated from other electrical activities of the brain [8,60]. Many advanced
techniques have been proposed to alleviate this issue by proposing artifact removal [61,62]
or incorporating advanced deep learning techniques such as a Transformer model and a
generative adversarial network analysis [63,64].

The remaining of the article is organized as follows. Section 2 provides an overview
of ultrasound imaging in speech recognition. Section 3 describes the standard evaluation
measures of the tongue segmentation algorithms. Section 4 includes the tongue contour
tracking techniques in ultrasound images. Section 5 discuss the algorithms quantitative
and qualitative evaluation results. Finally, conclusion provided in Section 6.

2. Overview of Ultrasound Imaging in Speech Recognition

An ultrasound system is portable, safe, and convenient, making it efficient for real-
time image acquisition inside or outside hospitals. Researchers and clinical linguists have
widely adopted the use of lingual ultrasound for different applications. Some of these
applications include using it as a visual feedback for second language teaching [65,66],
speech remediation to correct articulation for people with speech disabilities [67], speech-
related disorders such as autism [4,68,69], articulation research and analysis [10,65,70],
swallowing studies [71], tongue 3D modelling [72], and silent speech interface [7,73–75].
Furthermore, ultrasound imaging analysis is used in many applications in medical imaging
analysis for object detection and segmentation. Some of these applications are in the
field of cardiology, in which researchers obtain echocardiography images for the heart
to help cardiologists identify the health status of the heart [76,77]. Echocardiography
image segmentation is beneficial for measuring the left ventricle volume and estimating its
blood ejection fraction. It is also useful for examining heart valve performance. Moreover,
ultrasound is also one of the safest and most efficient tools for studying breast cancer and
assisting with cancer biopsy. Ultrasound images could help physicians examine breast
tissues to identify if a cancerous mass is benign or malignant, either in two-dimension (2D)
images [76,78,79] or three-dimension (3D) images [80]. A portable ultrasound system is
also used in healthcare facilities to assist in intravascular procedures [81,82]. Obstetrics
and gynecology use ultrasound systems on a daily basis to examine and mentor pregnant
women’s health and fetus growth [83,84]. Furthermore, ultrasound is also used to detect
ovarian tumours, which is one of the main diseases that affect women’s health [85].

Figure 1 visualizes the placement of the ultrasonic transducer beneath the chin and
the propagation of the acoustic wave. To capture the tongue image, an ultrasound trans-
ducer should be placed beneath the chin during the image acquisition to acquire the most
applicable view of the tongue contour. Ultrasound waves pass through the chin tissues
in-between the hyoid and mandible bones to reach the tongue. The impedance mismatch
between the tongue tissue and the air causes a strong reflection of the acoustic waves, which
allows us to detect the tongue structure by detecting the reflected acoustic waves. However,
the tongue is positioned deeply in the oral cavity, making it challenging to fully view the
contour during sound production. The hyoid and mandible bones absorb some acoustic
waves, which may block the view of the tongue tip and root. Moreover, the shadowing
of jawbones and instability of the head-transducer position would add other obstacles to
the experiment.

Figure 2 shows the view of the tongue contour in the sagittal plane during the image
acquisition using ultrasound. The final image of the tongue contour is presented on the
ultrasound screen as a bright white concave arc. However, the ultrasound system can detect
the tongue image but acoustic imaging is noisy by nature due to the low signal-to-noise
ratio, and in the case of rapid tongue movements, there might be missing tongue parts in
the image.
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Figure 1. Overview of ultrasound probe placement beneath the chin. The ultrasound wave is shown
in a black arc generated from the acoustic probe and propagated in the direction of the tongue.
The effect of the hyoid and mandible bones is blocking part of the ultrasound wave, as shown in a
black colour. The head and oral cavity picture was modified from the original picture for the case,
courtesy of Associate Professor Frank Gaillard, Radiopaedia.org, rID: 35836, [86].

Figure 2. Ultrasound image of the tongue showing the tongue tip and root in the sagittal plane.
The ultrasound probe on the bottom and the shadowing effect of the mandible and hyoid bone are
visualized. The copyright for this ultrasound picture belongs to the author of this article, Khalid
Al-hammuri [5].

Figure 3 depicts the typical ultrasound system configured with a microphone and the
head-transducer support system arrangement [5]. Most of the image acquisition missing
data are caused by ultrasound probe misalignment, losing the contact between the trans-
ducer and the skin, and the lack of acoustic gel that matches the impedance between the
chin-transducer tip [87]. To alleviate image acquisition challenges, different measures must
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be taken into account. A skilled ultrasound specialist shall conduct the image recording
session to properly acquire the image. During the session, it is recommended to use the
head-transducer support system to stabilize the head and ultrasound transducer placement
to maintain a fixed relative position between the transducer and the head. Furthermore,
a convex probe with a small and properly shaped tip area should be used to ensure the
ultrasound waveform can pass through the bones to minimize the shadowing effect on the
tongue tip and root. In addition, advanced signal and image processing techniques should
be used to postprocess and enhance the final image to ensure the data are clean and ready
for analysis. In order to further analyze and interpret speech, the system records the sound
of the speaker in parallel with the acquisition of the images.

Figure 3. Ultrasound image acquisition system used in speech analysis. The system is also configured
with a microphone and head-transducer stability system. The copyright for the ultrasound and
head-transducer support system picture belongs to the author of this article, Khalid Al-hammuri [5].

3. Evaluation Measures for Tongue Contour Extraction Using Ultrasound

Different techniques are used to evaluate the accuracy of the extracted tongue contour.
These techniques use manual or fully automatic extracted tongue contours as reference
data. The typical and most accurate methodology to compare the result is by measuring
the difference between the segmented tongue contour in the proposed methodology with
the extracted ground truth contour. The ground truth data are labelled manually by a
human who is specialized in using ultrasound systems. Some researchers use automatically
extracted data to validate their results. However, automatically extracted data are less accu-
rate than manual ground truth data. However, they are used when dealing with a massive
dataset, as it is time-consuming to produce manual data. Whether the reference data are
extracted manually or automatically, the methodology to measure the difference between
the extracted and the referenced data is similar and specific measures indicate the accuracy
of the methodology. Some measures are valid for either traditional or machine learning
techniques, and some other measures are only valid for machine learning techniques.

3.1. Mean Sum of Distances (MSD)

The mean sum of distances measure is adopted widely as an evaluation measure for
tongue tracking and segmentation; it was proposed by [10]. The mean sum of distances
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is derived by comparing the automatically extracted tongue contours by the algorithm
to the ground-truth-extracted contours by measuring the distances in two main steps.
First, the minimum distance between each element on the algorithm-extracted contour and
the nearest element on the ground truth is determined. Second, from the ground truth
contour, the minimum distance for every point is measured against the nearest point on
the algorithm-extracted contour. The sum of the minimum distances from these two steps
is divided by the total number of elements in the ground truth and automatically extracted
contours to normalize the results. Equation (1) shows the formula for the MSD.

MSD(U, V) =
1

m + n
(

n

∑
i=1

minj(| vj − ui |) +
m

∑
j=1

mini(| ui − vj |)) (1)

where (n) is the contour length of the ground truth, and (m) is the length of the auto-
matically extracted contour, while (vj) is the manually extracted contour (ground truth)
data points, and (ui) is the automatically extracted contour datasets. On the other hand,
(mini) and (minj) illustrate the nearest distances between each point on the contour and
the nearest point on the other contour, respectively. The MSD has a significant advantage
because the length of two contours is not comparable, and other comparison methods such
as the mean sum of errors and norm are inappropriate. The MSD is measured in pixels and
then converted to millimetres by assuming that each pixel is 0.295 mm [4,5].

3.2. Shape-Based Evaluation

Tongue contour image segmentation techniques are evaluated by the shape-based
triangle measure proposed by [88]. Equation (2) is used to measure the curvature, while
Equation (3) describes the asymmetry of the tongue contour.

K =
||CD||
||AB|| (2)

V =
||AD||
||DB|| (3)

This evaluation measure considers the asymmetry and curvature of the tongue shape.
||CD||, ||AB||, ||AD||, and ||DB|| depict the segment lengths that are shown in Figure 4.

Figure 4. Shape-based evaluation measure. Point (A) is on the dorsal tongue part, point (B) is the
point on the tongue tip, point (C) is the apex. Point (D) is the projection of point (C) on the (AB) line.
The copyright for this ultrasound picture belongs to the author of this article, Khalid Al-hammuri [5].
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3.3. K-Fold Cross-Validation

Figure 5 shows the data validation on different folds or segments to maximize the
model performance. The K-fold cross-validation method can be used to evaluate machine
learning models’ performance by comparing the training and validation datasets [89].
The K-fold process can be done by partitioning the complete datasets into a number K of
segments. For instance, the typical practice of model validation uses 80% of the segments
for data training and 20% for validating the data. The K-fold cross-validation shuffles
between the K segments to reassign different subsets into the validation and training
segments. The final performance is evaluated by computing the mean sum of the K-folds.

Figure 5. K-fold cross-validation process. (A) The K iterations of the cross-validation. (B) The training
fold data and labels. (C) Evaluating model performance during the validation fold data stage.

3.4. Dice Score Coefficient (DC)

Dice’s similarity coefficient is one of the most important measures to evaluate image
segmentation techniques, especially in deep learning algorithms. The Dice coefficient is a
statistical tool measuring the similarity between two data sets. The coefficient is important
especially in computer vision applications as it can compare the segmented object to the
ground truth data and give a sense of how accurate the algorithm is. Equation (4) shows
the Dice score similarity coefficient formula.

Dice = 2x(
U
A
) (4)

where (U) is the intersection area between two objects and (A) is the total area of two objects.

Mean Square Error (MSE)

The mean square error is the averaged squared error of the datasets. It is a typical
evaluation metric to evaluate how accurate the predicted data are compared to the reference
data. Equation (5) describes the mean square error mathematical formula.

MSE =
1
n
(

n

∑
i=1

(xi − yi)
2) (5)

where (x) is the predicted value, (y) is the observed value, and (n) is the number of
data points.
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4. Tongue Contour Tracking Techniques in Ultrasound Images

This section is a review of the tongue contour tracking methodologies in ultrasound
images. There are two main subsections that categorize the tracking algorithms: first, tradi-
tional image analysis techniques for tongue contour tracking that review the nontraining-
based algorithms, which use a snake algorithm and a graph-based image analysis as core
methodologies; second, machine learning-based techniques for tongue contour tracking to
review the training-based algorithms that use machine and deep learning.

4.1. Traditional Image Analysis Techniques for Tongue Contour Tracking

Tongue tracking by ultrasound was addressed in early research by the cited works [90,91].
However, the process was manual and required a cautious user attention while handling
the ultrasound transducer. To enhance the transducer guidance, metal pellets were used as
a strong reflector to identify few landmarks on the tongue surface. The landmarks were
used as a reference to monitor tongue movement during swallowing by comparing the
pellets placed on the tongue anterior and posterior segments to the hyoid bone reference at
different stages of movement.

There are two main traditional methodologies used to segment the tongue: active contour
model (snake algorithm)and shape consistency and graph-based tongue tracking models.

4.1.1. Active-Contour-Based Methodologies (Snake Algorithm)

To automate tongue contour tracking, many researchers have relied on the snake
algorithm [92,93] as the base algorithm for most of the traditional techniques in tongue
contour tracking. The snake algorithm is an active contour and energy-based method that
adapts to get closer and closer to the object until reaching a certain threshold or energy
constraints to fit the object boundary. The snake algorithm has been used widely in vision
tasks such as the detection of lines, objects and subjective contours, and motion tracking.
In the case of lingual ultrasound, the snake algorithm can be useful for interactively
segmenting a tongue contour by applying certain user-imposed constraint forces to localize
the tongue features of interest. Examples of the first attempts to use active contours for
tongue tracking tasks were provided by [94–96], which were made by the same authors
and improved consequently.

An adaptive snake algorithm was introduced by [94]. The authors collected 2D ultra-
sound images and used a head and transducer support system to stabilize the ultrasound
transducer. In the first frame, a human expert selected a few candidates of the contour
points to generate the initial tongue contour to initiate the snake algorithm. For the fol-
lowing frames, the researchers proposed an adaptive model that estimated an optimized
contour that matched the tongue contour edges on each frame. Finally, the algorithm
implemented a postprocessing technique to enhance and refine the extracted contours.

The cited work in [95] followed the same process as the work in [94] and extended
the work using different constraints to test it in speech and swallowing applications.
The authors in [95] showed an improvement in the model performance by minimizing the
computational cost to make it more flexible for a variety of different tasks.

Similarly, the algorithm proposed by [96] required an initial input from an expert
to delineate the tongue contour on the first image frame to ease the snake algorithm
optimization of the energy constraints that enforced the detection of tongue contour edges
in the desired region of interest. Subsequent video frames were processed by adapting
the initial contour edges to match the tongue deformation. External and internal energy
functions were suggested to optimize the tongue contour’s external edges and concavity,
respectively. Although the methodology showed some success in tongue contour detection,
its performance dropped drastically in the case of noisy images due to its sensitivity to
speckle noise. Moreover, in the case of rapid tongue movements, the external energy
function could fail to adapt the edges and match the tongue boundaries’ deformation to the
new position at the next frame. This, unfortunately, limited the ability of this methodology
in real-time processing as it could fail suddenly during the video processing in real time.
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Publicly available software EdgeTrack [2] proposed an improvement to the mentioned
work in [96]. EdgeTrack implemented an enhanced methodology for the active contours
that incorporated the gradient, local image information, and object orientation, unlike
the classical methods that relied only on the gradient information [2]. This improvement
optimized the contour’s lower boundaries and rejected any undesirable edges unrelated
to the tongue. EdgeTrack software had a few technical limitations, and like any other
deformable models, it could misidentify the true tongue contour’s edges. EdgeTrack did
not have any preprocessing capability, reducing the snake algorithm’s efficiency as it is
sensitive to noise. The software program could not process a long video sequence with
more than 80 frames, limiting it to short recordings. This is not beneficial in the case of
long speech processing sessions or a real-time analysis. EdgeTrack was computationally
expensive because the algorithm relied on complex optimization techniques. In some cases,
when there was a rapid movement during the speech, the tongue contour had a visible
deformation that looked like a concave arc; the software tool failed because it did not use
temporal smoothness in the minimized internal energy function. EdgeTrack results were
validated by two experts who delineated the tongue contour manually. The mean sum of
distances (MSD) accuracy measure was used to compare the results between EdgeTrack
and manual ground truth data. The reported results were in the range of 1.83–3.59 mm for
the MSD.

The multihypothesis approach [4] combined the traditional motion model, snake
algorithm, and particle filter to track the tongue contour. The first step toward building
the algorithm was by deriving a motion model based on manually prelabelled images.
Next, tongue contours were extracted and then normalized with respect to the length and
position. Following that, a principal component analysis (PCA) and mean shape were
estimated, then the covariance matrix was computed by using the information from the
tongue motion information such as the scale, shape, and position.

The snake algorithm used in [4] required to be initialized to process the tongue tracker
by manually identifying points on the contour at the first frame to segment the tongue.
After that, the particle filter was created by copying the segmented contour for a defined
number of so-called particles. Next, a multihypothesis approach was created from each
copied particle of the previous frame based on the derived motion model of the tongue
scale, position, and coarse shape. The derived tongue contour model was then adapted
using the snake algorithm to fit the tongue contour accurately. A band of energy-optimized
constraints was used to choose the best particle by ensuring that the tongue contour was
below the bright white arc on the tongue’s upper surface. Two groups of subjects with
Steinert’s disease (a form of myotonic dystrophy that causes slow speech, distorted vowels,
and consonants) and healthy subjects were used to validate the research study. The reported
accuracy was 1.69± 1.10 mm for the mean sum of distances (MSD). However, the approach
claimed that it was not highly dependent on the training data. The segmentation accuracy
was still dependent on the number of particles, which increased the snake algorithm’s
computational complexity [4].

To fully automate the tongue contour extraction without using training data or human
interaction, some researchers designed multistage techniques [6]. Unlike other semiauto-
mated methodologies such as those in [2,3,97], which required human interaction in the
first frame, this methodology initiated the active contour model by automatically deriving
candidate points on the tongue contour. These points were identified by applying the phase
symmetry method for image enhancement. Then, the image was skeletonized, and data
points were clustered to select the best candidate points. These candidates were used
as initialization points for the algorithm. The accuracy improved by implementing two
methodologies for algorithm resetting or reinitialization in a frequent and timely manner
order. According to the results, the measured mean sum of distances (MSD) accuracy
measure was similar to that of other semiautomated techniques. They claimed that the
MSD was 1.01 mm and 0.63 mm for their fully automated and reinitialized techniques,
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respectively. The reported results were highly accurate with some frames, but this may not
be easy to achieve when processing videos in real time.

However, relying on the active contour model for tongue tracking in ultrasound
images is error-prone and maybe not the most efficient technique. In some cases, it can lead
to ultimate failure due to the number of constraints needed for the model adaption, which
is difficult to predict for all cases accurately. Although the approach in [6] proposed a novel
methodology for automating the process of identifying the active contour initialization and
reinitialization parameters, this was still not enough to produce highly accurate results
in a global and generalized context. There are many variations in ultrasound imaging
modalities that produce different imaging qualities, making it difficult to track the tongue
contour using the same active contour model constraints.

The similarity-constrained active-contour-based methodology for tongue tracking
proposed in [98] suggested a technique that coped with the tongue contour tracking errors
and missing data based on the tongue shape from previous contours to minimize the effect
of missing data. In order to deal with the accumulated error during the continuous tracking
of the tongue contour over a video sequence, a complex-wavelet image similarity index
(CW-SSIM) was proposed to reinitialize the tongue tracker automatically. This algorithm
showed an advancement compared to traditional techniques by handling missing data
and using an automatic reinitialization. However, it was still based on the active contour,
which is error-prone and sensitive to noise. Too many constraints would enhance the model
accuracy but increase the computation cost. The best-reported results using similarity
constraint + CW-SSIM were an MSD of 0.9912 ± 0.2537 mm.

As mentioned before, all methodologies that are based on the active contour may
suddenly fail and the tongue tracker would stop. An initializer, either manual or automatic,
is needed to enhance the accuracy of tongue tracking. The researchers in [99] conducted a
comparative study on the effect of an automatic reinitialization technique to enhance the
well-known traditional image segmentation. The automatic reinitialization enhanced the
results from an MSD of 5–6 pixels to about 4 pixels (1 pixel = 0.295 mm). The MSD accuracy
results without the need for automatic reinitialization for the well-known tongue tracking
tools EdgeTrack and TongueTrack were 7.06± 2.77 pixels and 5.59± 3.04 pixels, respectively.
The MSD accuracy after using the automatic reinitialization was 3.46 ± 1.04 pixels and
3.60 ± 0.96 pixels for EdgeTrack and TongueTrack, respectively.

4.1.2. Shape Consistency and Graph-Based Tongue Tracking Methodologies

Researchers derived an active appearance model to predict the tongue contour shape
on ultrasound images in [100]. The active appearance model was inspired and estimated
using a manual delineation and extraction of the tongue contour from tongue X-ray images.
The results were compared to those of EdgeTrack [2] and the constrained snake algo-
rithm [101], which combined ultrasound, EMA, and recorded voice to predict the tongue
shape. The work in [100] showed an improvement in root mean square error compared
to that of [2,101]. The active shape model (ASM) was also evaluated and used in [91]; the
authors showed that the ASM was efficient and powerful for phonological applications. It
was able to capture the tongue motion variation by capturing the temporal information. It
was also useful for either automated or semiautomated techniques.

Lingual ultrasound tracking was introduced in another well-known software called [3]
TongueTrack, which could process a sequence of 500 frames. The methodology considered
contextual information and advanced optimization techniques to estimate unpredictable
tongue motion. The reported accuracy was 3 mm, making it acceptable for segmentation
purposes. The tool used a higher-order Markov random field energy minimization frame-
work. The results were validated with the ground truth data from two different groups of
63 acoustic videos [3].

The process of TongueTrack required an initial human interaction by manually delin-
eating a few points on the first tongue contour to be used as an initializer for the algorithm.
After that, the delineated points were fitted by using a curve-fitting polynomial function to
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build a continuous and smooth contour. Next, a solution-space label set was created by
generating an estimation model for the dynamic tongue motion. This label set was used to
compare each contour with the minimized Markov random field energy module in each
subsequent frame. It processed it iteratively until reaching a predefined threshold; it was
predefined as 2 mm in [3]. The tool obtained good results, but it had a few drawbacks.
The software tool could not process long video frames. At the same time, the algorithm
optimizer might not converge properly, leading to a sudden failure in tracking progress as
it required 20 iterations to optimize nine parameters. Moreover, the algorithm needed a
manual reinitialization by delineating the tongue contour by hand, limiting its efficiency
for real-time processing.

Tongue contours are also tracked in ultrasound images by using graph-based anal-
ysis of the temporal and spatial information during speech [102]. Spatial information is
essential to extract tongue features from each image on a single frame. At the same time,
the temporal resolution is necessary to predict the intrarelationship between the entire
sequence of image frames extracted from the video session of the speech. The tongue
tracker was implemented as an optimization problem using a Markov random field energy
minimization. The algorithm enforced temporal and spatial regularization constraints to
ensure tongue tracking reliability.

In the landmark-based tongue contour tracking [97], the tongue shape was predicted
based on the position of a few pellet plates used as landmarks on the tongue surface.
The landmarks were extracted from the available articulatory database. The available
landmark positions were smoothed using the spline function and compared to the ground
truth data extracted by ultrasound images. Tongue contours extracted by ultrasound
helped to identify the optimum number of required landmarks to get the desired accuracy
of 0.2–0.3 mm for any future use.

Another research study coped with the tongue tracking problem by modelling it as
a biomechanical method [103]. The methodology was initialized by manually drawing a
closed contour around the external and internal edges of the tongue. The Harris feature
detector was used to identify the one hundred most significant corners or edge features.
The detected points were sorted in descending order based on the quality of the feature.
An optical flow algorithm was then used to estimate each point’s displacement in the
consequent frames. The corner feature displacement estimation was approximated only in
the neighbour pixels (around 15–20 pixels) to minimize the displacement error in case of any
missing data. In order to minimize the uncertainty of the estimated features, a covariance
matrix was computed. The accuracy was measured by the mean sum accuracy, which
was reported between 0.62 mm and 0.97 mm. However, the study faced many challenges.
The algorithm required many parameters and constraints to be computed in order to
estimate the displacement. Relying on the Harris feature detector may not have been
efficient, especially in the case of rapid tongue movement, missing details, or extreme
deformation, as it was almost impossible to guarantee that the same detected corner
features were visible in the next frame within the neighbourhood pixel constrains.

An interactive approach for lingual ultrasound segmentation that incorporated four
stages from preprocessing to the segmentation and postprocessing analysis was introduced
in [5]. In the first stage, and unlike other methodologies that ignored an essential part of
image denoising, the thesis implemented novel denoising techniques by using a combined
curvelet transform and shock filter. In the second stage, the thesis derived an interactive
model that predicted the tongue area of interest to minimize the computation complexity
and contour tracking error. The third stage focused on tongue contour extraction and
smoothness. The fourth stage proposed a new technique that transformed the extracted
tongue contour from an image state to a continuous signal which resembled a full video
for all frames. The advantage of this technique was that it enabled the researcher to
extract a unique signature of each sound; this could be beneficial for training a machine
learning model on sound pattern recognition. The tongue contour segmentation results



Diagnostics 2022, 12, 2811 12 of 26

were validated and compared to ground truth data. The mean sum of distances (MSD)
was 0.955 mm.

4.2. Machine-Learning-Based Techniques for Tongue Contour Tracking

One of the early attempts to use deep learning for automatic tongue extraction was
made by [104]. Their methodology, Autotrace, was implemented using a translational deep
belief neural network (tDBN), which was based on restricted Boltzmann machines (RBMs).
The network was trained based on human-labelled and generated sensor data. The hybrid
data training methodology was efficient for improving tongue contour segmentation
accuracy. However, there were discrepancies in the segmentation of some image frames
and model-segmented tongue-unrelated parts. The results were validated by using a
five-fold cross-validation, and the reported accuracy was measured by an average mean
sum of distances (MSD) of 2.5443 ± 0.056 pixels (1 pixel = 0.295 mm [2]). The algorithm
segmentation capabilities were fair enough; however, a postprocessing algorithm was
needed to refine and enhance the final tongue contour segmentation. Figure 6 depicts the
ultrasound image, manually labelled tongue contours and the extracted tongue contours
proposed by [104].

Figure 6. The process of labelling ultrasound images and extracting tongue contour using a deep
belief neural network. All labels from (A–D) are horizontally ordered. (A) Ultrasound image before
processing. (B) Manually labelled ground truth data. (C) Extracted features from ultrasound images
using a translational deep belief neural network. (A) Extracted tongue contour overlaid on the
original ultrasound image [104].

To improve Autotrace [104], researchers in [105] proposed a new technique that
automatically labelled the tongue contour, followed by training the algorithm in two phases.
Using a deep autoencoder, the algorithm learned the relationship between the extracted
contour and the original ultrasound image. By using the training data, the algorithm was
able to reconstruct the tongue contour from ultrasound images without human intervention.
The results were validated by comparing the average mean sum of distances between the
hand-labelled and the deep-learning-extracted contours. The average MSD was reported
as 1.0 mm, making it applicable to lingual ultrasound applications.

Based on the principal component analysis (PCA) and a neural network, an automatic
algorithm was designed to segment the tongue contour [106]. The PCA-based feature
extractor, Eigen Tongue, was used to extract the tongue contour features from the ultra-
sound images. The visual features of the extracted Eigen Tongue were processed using an
artificial neural network based on the PCA feature model. The model was evaluated by
using 80 annotated images from nine speakers. The average error measured by the MSD
was reported to be around 1.3 mm.

Typical convolutional neural networks were used to classify the tongue gesture from
B-mode ultrasound images on the midsagittal plane in [107]. The researchers used data
augmentation to increase the size and versatility of the data, which increased the algorithm’s
performance. The reported accuracy results for the classification task were 76.1%. Further
improvements were suggested as future work. The recommended improvements were in
the model optimization or combining the methodology with a hybrid technique such as
the ensemble method.
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The well-known U-net architecture [108] was used by [109] to automatically extract
the tongue contour in ultrasound images. The algorithm was trained by using 8881 human-
labelled images collected from three subjects. The results were validated by using the
Dice score, which was 0.71. Relying on the Dice score only for validation is not enough.
More validation is needed for their methodology, such as the mean sum of distances
(MSD) measure, which has become a de facto standard in the lingual ultrasound accuracy
measures. The MSD provides a reliable measure that considers the variation of the tongue
contour length, which normalizes the sum of distances over the tongue contour length.
To further enhance the performance, it might be needed to use a hybrid technique and
larger dataset.

To automate tongue segmentation, a convolutional-neural-network-based architecture
was utilized in [110]. They compared the efficiency of using the U-net [108] and Dense
U-net [111] architectures to extract the tongue contour. These architectures have become de
facto models of biomedical image segmentation and gained a wide popularity in the field.
The results showed that Dense U-net was more generalizable for a wide variety of datasets.
At the same time, the standard U-net architecture could perform the tongue extraction task
faster. After extracting the tongue contour, it had to be postprocessed. In the postprocessing
stage, the output was fed into a probability heat-map model, where the intensity of each
pixel corresponded to the probability of each part of the tongue [110]. A 50% threshold was
applied to filter out any undesired predictions. The remaining output was skeletonized to
reduce the segment thickness. Following that, the results were smoothed and interpolated
using the UnivariateSpline function in the SciPy package in Python. The final output was a
hundred points to represent the predicted tongue. The algorithms were evaluated using the
MSD for the 17,580-frame dataset. The reported MSD results for the 32× 32 data size were
5.81 mm and 5.6 mm for U-net and Dense U-net, respectively. The research also showed
that data augmentation and the loss function significantly affected model performance
other than stacking more layers.

Two deep learning architectures were designed, BowNet and wBowNet, to extract
the tongue contour from ultrasound in [112]. With the integrated multiscale contextual
information, the decoding–encoding model had the ability for global prediction. The dilated
convolution had the local searching capability of preserving image features more than
standard convolution, making it valuable for medical imaging applications to retain fine
image details. The two architectures enhanced the final prediction results by combining
the local and global searching. The mean sum of distances for BowNet and wBowNet
compared to the greyscale ground truth images was in a range of 0.2874–0.4014 in pixels for
BowNet and 0.1803–0.3588 pixels for wBowNet. However, the reported results appeared to
be almost perfect, which is not easy to achieve in the case of a complex analysis of lingual
ultrasound. The researchers need to provide more information about the data validation in
a generalized clinical context by using a dataset from a different source.

A simple approach to extracting the tongue contour by training a deep network on
landmarks annotated on the tongue contour was developed in [113]. These landmarks
were automatically and randomly selected on different points by using annotation software.
The model architecture was called TongueNet, and the results were validated by the mean
sum of distances which achieved 4.87 pixels.

Using U-net and the lighter version of sU-net in a thesis work, a deep learning ap-
proach was implemented to segment tongue contours [114]. In their thesis, the researcher
emphasized the validity and performance of deep learning models to segment the tongue
contours from ultrasound images. However, they suggested that the deep learning model
they used only focus on the spatial information on a single image frame without consider-
ing the temporal information that handled the full speech in the video sequence. The the-
sis [114] also discussed the limitations of their deep learning model in their generalization
capability of feature extraction, as they inherited the nongeneralization of convolutional
neural networks (CNN) models, which is the core of a deep learning model such as the
U-net architecture. The thesis suggested using data augmentation to enhance the model
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training by considering the variation and image transformation to handle different cases at
different scales.

A denoising convolution autoencoder (DCAN) model to process B-mode ultrasound
images was investigated in [115]. The model reported being able to extract image features
due to its ability to denoise and retain the resolution of the reconstructed input from the ul-
trasound. It was tested on reconstructing ultrasound images in speech-related applications.
The research compared the DCAN to other three well-known autoencoder architectures,
the deep autoencoder (AE), the denoising autoencoder (DAE), and the convolutional au-
toencoder (CAE). The reported result showed that the DCAN had a 6.17% error rate in
identifying words in a silent-speech recording test [115].

Researchers implemented a novel technique that harnessed the spatial–temporal anal-
ysis to predict future tongue movement based on a short recording of the past tongue
motion in [116]. The research used a combination between a convolutional neural network
(CNN) and long short-term memory (LSTM), which was called ConvLSTM. The advantage
of this combination was that the CNN had the ability to segment tongue contour in each
image frame to extract spatial information. However, it could not process the temporal
information of ultrasound image sequence frames. On the other hand, LSTM was used in
processing data sequence in one dimension, making it efficient for temporal information
data prediction, but at the same time, it was unable to handle images in two dimensions
(2D). The ConvLSTM could handle image data in 2D and predict future data based on the
history of tongue motion. The ConvLSTM results outperformed the three-dimensional con-
volutional neural network (3DCNN) in predicting future tongue contours. The ConvLSTM
was able to predict the future nine frames based on data from the previous eight frames.
We believe this algorithm was not only important for data prediction of tongue contours,
but it might be helpful for generating more data that are close to real data to train larger
deep learning algorithms such as a Transformer model or a graph neural network.

An algorithm combining an image-based segmentation model, U-net, and a shape
consistency regularizer was proposed by [117]. The combination provided a solution to the
missing data in ultrasound images by predicting the information based on the consideration
of the sequential information of the shape regularizer. The regularizer was derived based
on the similarity between adjacent image frames. The results were validated by computing
the MSD of the tongue contour data segmented by the U-net algorithm using different loss
functions. The quantitative validation showed that the combination between the regularizer
and cross-entropy loss (CE) obtained the best results among the other compared losses such
as the Dice coefficient (DC) or the active contour loss (AC). The CE+regularizer reported
having an MSD of 2.243 ± 0.026 mm.

To improve the well-known U-net architecture, researchers proposed a tongue contour
segmentation algorithm called wUnet [118]. The main modification of wUnet was replacing
the skip connection in typical U-net with a VGG19 block. The researchers claimed that the
new algorithm surpasses U-net by passing more information to the decoder to compensate
for the information loss during the convolution within the encoder. The wUnet validation
results showed an MSD of 1.18 mm compared to 2.26 mm in the U-net architecture.

A system based on a deep learning technique was designed to predict silent speech
using ultrasound images in [119]. The system was trained on audio features recorded syn-
chronously with ultrasound images using a deep convolutional neural network. The system
was designed to predict the speech sound from the silent speech based on the training data.
This methodology could be beneficial for human–machine interaction in smart devices.

To update an older silent-speech benchmark study [74], the work [73] used a deep
learning approach for the same benchmark. The new study used a deep autoencoder to
train the collected dataset from acoustic tongue and lips movement videos, which were
collected at the same time.

The research [9] used ultrasound videos to extract tongue features using deep learning.
The dataset was collected from 82 speakers and trained using the Kaldi speech recognition
toolkit [120]. In terms of speech analysis, the research suggested two methodologies. The
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first one was the utterance or speech duration, which was measured based on the syllable
rate. The second one was the articulatory area, which was measured by estimating the
convex hull area, which was the area under the tongue contour spline that formed a convex-
like shape when extracted from the ultrasound images using the MTracker tool [109].
Following that, a postprocessing was performed by the isolation forest method [121].
The research found that the silent articulation exhibited a longer time compared to the
model speech.

5. Results and Discussion

Qualitative and quantitative evaluations were used to evaluate the performance of
the tongue segmentation from ultrasound images. Traditional and machine learning
algorithms have different abilities for tongue image recognition to make each methodology
unique on its own. In the qualitative analysis, we propose a qualitative scoring matrix that
considers the final image quality, shape consistency, and algorithm complexity to test the
method’s usability performance. In the quantitative evaluation, we consider the MSD as a
primary measure and some other measures such as the RMSE, MSE, and word error rate as
secondary measures for some other applications.

5.1. Qualitative Evaluation

Among the traditional techniques that are based on the snake algorithm, the multi-
hypothesis approach [4] produces robust research to handle tongue tracking efficiently.
The output image quality is acceptable for speech recognition tasks. However, the quality
of the image depends on the number of particle filters that are used, which makes this
technique not practical for real-time applications. The algorithm is also tuned based on the
tongue shape and motion model derived from different image frames. There is a trade-off
for using a motion model. It may help to increase the confidence ratio of the segmented
tongue contour. However, at the same time, the derived motion model may be inaccurate
and cannot be applied in a general perspective. The research in [4] has some limitations
that can be addressed efficiently using deep learning algorithms based on an attention
mechanism such as Transformer.

Publicly available tools such as EdgeTrack [2] and TongueTrack [3] are inefficient
in real-time processing. They are susceptible to sudden and frequent failure during the
segmentation and require a manual reinitialization to continue the processing. The image
quality for their segmented contour is fair but is not suitable for medical-grade applications.
These algorithms could not address the missing data issue and the variation of the shape
consistency. The main drawback of these algorithms comes from the heavy optimization
of too many parameters. The optimization issue does not just make them slow but also
very limited to a specific subset of data and they cannot be applied for real challenges
outside the lab. TongueTrack has an advantage over EdgeTrack by considering the spatial
information between different frames. We believe if they used image denoising and a
region-of-interest selection, the burden of computation complexity could be minimized.
For future work suggestions, using a U-net architecture could be efficient for removing
image noise and extracting image features, then combining them with existing algorithms
as a hybrid technique.

The biomechanical method [103] derived a motion model for the tongue contour
geometrical movement based on previously labelled X-ray images. The motion model
alongside a Harris feature extractor were used to track the tongue features. The Harris
feature extractor has too many limitations because it is sensitive to noise and requires
localization constraints to select tongue contour features around the desired region of
interest. In real-time tracking techniques, it may not be accurate since tongue motion may
be more significant than the suggested local constraints. The final image and the extracted
contour are susceptible to a high degree of uncertainty, making it not efficient for prediction
using the suggested pipeline. The idea of using X-ray images to extract the motion model
is good if we consider image quality compared to ultrasound. However, it could be risky to
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train the data from data with different distributions or statistical characteristics, requiring
additional analysis. In future work, we recommend using deep learning algorithms instead
of unrealistic motion models to merge ultrasound and X-ray images. Image fusion with
deep learning models could be a potential solution for this problem as they can merge the
quality of X-ray and ultrasound images using some image features or landmarks.

On the other hand, [5,6], unlike most traditional techniques, implemented denoising
techniques to enhance the image and refine the tracking accuracy. However, the paper [6]
relied on the snake algorithm as a base algorithm but with an automated reinitialization
technique. The automatic reinitialization technique was robust enough to handle the
sudden failure of the active contour. It might be more efficient than EdgeTrack and Tongue-
Track. However, the algorithm [6] still relied on too many constraints to optimize the
snake algorithm. As mentioned before, this limits the ability to predict and estimate tongue
displacement in a global context, making it unrealistic to predict the performance of any
new data from a new source. In comparison, the research proposed in [5] went in a different
direction to track the tongue without using the snake algorithm. A combined curvelet
and shock filter denoised the image, then based on the temporal information of previous
contours, an adaptive tongue region of interest was implemented. To extract a unique sig-
nature of each speaker, the tongue feature was extracted and transformed into speech time
series data. In future research, we recommend combining the algorithm proposed in [5]
with deep learning. The proposed research in [5] was robust for feature extraction using
a policy-based adaptive model to extract features but had some limitations for real-time
applications. Similarly, we recommend the algorithm [6] as a postprocessing tool combined
with deep learning in a hybrid tongue contour extraction and refinement technique.

In deep learning methodologies, the research on convolutional neural networks to
automate tongue segmentation [110] used the de facto segmentation models in biomedical
imaging analysis, U-net and Dense U-net. Dense U-net had more generalization capability,
meaning it could extract more features in a global context. It would be more accurate for
any dataset outside the training set. However, Dense U-net is slower than the traditional
U-net architecture which makes traditional U-net more efficient in real-time segmentation.
Autotrace [104] used a translational deep belief network for image segmentation and was
improved by [105] using a deep autoencoder. The deep autoencoder relied on the user
data input, which affected the results for a limited context of given data. BowNet and
wBowNet [112] and TongueNet [113] suggested two techniques for the tongue segmenta-
tion task based on multiscale contextual information and a deep network of landmarks.
In general, most deep learning algorithms are based on CNNs, which is helpful for feature
extraction and noise removal in a local context. However, the intrarelationship between
the sequential image frames is limited. We suggest combining a CNN and any other
deep learning-based spatial–temporal analysis to process continuous data. Some of the
suggested algorithms are Vision Transformer, Vision-Graph, and ConvLSTM.

The authors in [116] proposed a ConvLSTM architecture. ConvLSTM is a novel
approach that derives temporal information from the ultrasound images by extracting
the intraframe relationship to resolve the issue of the lack of temporal resolution of other
techniques. The model could predict tongue shape in the consecutive nine frames based
on the data from the previous eight frames. In the same manner, [117] proposed a tongue
contour tracking algorithm using a state-of-the-art U-net architecture alongside a temporal
shape-consistency-based regularizer. This methodology was one of the most reliable
techniques for real-time tongue processing. In their method, they used it to predict future
frames, which could be used for training larger and more efficient algorithms such as the
Transformer model. The Transformer model is gaining popularity as the state-of-the-art
algorithm in the field due to its performance and predictability. The Transformer model
also has some limitations, and it needs a huge dataset for training; this could be alleviated
using the transfer learning methodology. Moreover, Transformer requires a fixed size of the
input. LSTM also has limited memory but does not need a huge dataset like Transformer.
The final suggestion is to use attention-based algorithms such as the Transformer model
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if the dataset is huge. If the dataset is small, LSTM can be used. Regarding image quality
for deep learning, U-net is well known for preserving image features and noise removal.
At the same time, attention-based algorithms are robust for predicting the correct speech
behaviour to produce a high-quality output.

Figures 7 and 8 depict the quality evaluation matrix and bar chart for the total qualita-
tive score of each category of tongue segmentation techniques. Image quality is generic
and difficult to measure. Due to the lack of a definitive standard for image quality, we
are proposing a new matrix that scores image quality based on different factors. In order
to determine the image quality, we use the visual inspection and structural similarity
index measure [122,123]. In the usability measure, we mainly consider the algorithms’
generalization and scalability. A generalized algorithm is one that performs well in real-life
situations as well as in lab testing. For the scalability measure, we define an algorithm as
scalable if it is not sensitive to the variation in use-case environments or data size. This is
crucial to ensure the algorithm is viable for use in different scenarios, not just optimized
for one solution. The consistency of shape is essential to determine whether the predicted
shape is actually a tongue or not. We measure the shape consistency by comparing the
results with ground-truth-labelled images and the data collected from different algorithms.
The qualitative evaluation matrix is scored on a 0–5 scale (zero is the lowest and five is
the highest). The final quality score is depicted on a percentile scale and evaluated with a
satisfaction rate from low to high.

Figure 7. Quality evaluation matrix. Usability, image quality, and shape consistency are scored on a
0–5 scale (0 is the lowest and 5 is the highest). The final quality score is shown on a percentile scale
and a satisfaction rate from low to high.

Figure 8. Bar chart for the total qualitative score of tongue image segmentation categories. The
Y-axis is the qualitative score probability, and the X-axis is the quality score category for each image
segmentation technique.

5.2. Quantitative Evaluation

The primary quantitative measure to evaluate tongue contour segmentation in this
article was the MSD. The MSD is valid for this problem as it uses averaged measures
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to account for the tongue contour variation. The average MSD for the machine learning
approaches was 1.4 mm, and the average MSD for the traditional techniques was 1.65
mm. The accuracy of these measures can be arguable as it is difficult to judge these results
in realistic applications. These methods are never used in production and never tested
outside the lab. One of the common challenges in image recognition or machine learning
is when the designed models typically fail when used outside the lab while they pass the
testing stage in the lab. Poor performance may result from a small training dataset or an
insufficiently generalized model (a generalized model performs well in testing and training).
To transfer the model from research to the successful production stage, we recommend
using a cloud-based solution to scale the designed model and evaluate the performance
in different environments. In order to increase dataset diversity, we recommend data
augmentation techniques. Moreover, transfer learning could be a viable solution if limited
data are available. Transfer learning is using features from pretrained models such as
Imagenet [124] or VGG19 [125] and then fine-tuning the algorithm on the target datasets of
the tongue images. Transfer learning minimizes the training time and enriches the model
with low-level features such as edges and textures to help with data size limitation and to
obtain more statistically accurate results. On the other hand, data augmentation helps to
generate new data. Data augmentation can be simple, such as transforming data, rotating it,
and flipping it, or more complex, such as creating new images using generative adversarial
networks (GANs) [126].

There are different validation measures considered in addition to the MSD. Some
of these measures are RMSE, MSE, speech recognition success ratio, word error rate,
mean segmentation error, and accuracy. The fact is that there is no definitive recipe for the
validation, and a combination of different measures is needed to address each methodology.

The MSD is considered a reasonable measure compared to the RMSE and MSE. For in-
stance, the RMSE is helpful in regression analysis when we want to consider lower residual
values unlike the MSE, which is biased towards higher values. The RMSE was used in [97]
and the reported result was 0.2–0.3 mm, which was not meaningful statistically to be
considered as a reference for tongue segmentation standard. The MSE was reported in [116]
and the result was 17.3 mm. The better MSE is, the closer to zero. The problem with this
measure is that it is sensitive to outliers or abnormal values, which maximize higher values;
this explains why the error was high in [116]. To use the MSE correctly, the researcher
should be careful in the feature engineering stage to remove unnecessary data. A loga-
rithmic scale sometimes helps in this case. Accuracy was also used in the biomechanical
method [103]; they reported a result of 0.62–0.97 mm. Accuracy is a generic and simple
evaluation measure. It has severe limitations in the case of data imbalance and does not
account for the variation in data size.

Some other used measures such as speech recognition success ratio which was reported
in [119] as 65% for their algorithm evaluation. It only provides a counting measure for the
final speech success rate, but not for the tongue segmentation accuracy. It is not valid in the
case of data variation, since it neither considers nor accounts for the statistical distribution.
The word error rate was also reported in [115]. It can provide a general impression of
performance, but it does not provide any meaningful or accurate information about the
tongue; it does not provide any clinical measure. The mean segmentation error was used
in [102]; their results were reported for dense and sparse data as 4.49 mm and 2.23 mm,
respectively. This technique was compared to the MSE, but the researchers enhanced
it by adding additional optimization techniques to remove unnecessary data. This is a
significant enhancement compared to the MSE evaluations, but it is not as efficient as the
MSD, which represent the most reasonable measure that can be valid to evaluate tongue
segmentation techniques.

Table 1 compares the most important techniques used to segment tongue contour from
ultrasound images by describing each method’s core methodologies, results, data types,
and limitations.
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Table 1. Comparison between different tongue contour segmentation methodologies.

Method Category EV. Measure EV. Result Data Type Core Methodologies Limitation

EdgeTrack [2] Traditional MSD 0.53–1.0 mm Tongue US images
Snake algorithm + gradient + local
image information and
object orientation

Sensitive to noise, computation
complexity, can process only 80 US
frames in one session

TongueTrack [3] Traditional MSD 3 mm Tongue US Higher-order Markov random field
energy minimization framework

Needs manual reinitialization, sensitive
to noise, can process only 500 US
frames in one session

Tongue shape
prediction from
landmarks [97]

Traditional RMSE 0.2–0.3 mm Tongue US + EMA
or X-ray

Spline interpolation + Landmark
mapping using metal pellets

Difficult to use due to the limitation of
the data collection

Graph-based [102] Traditional
Mean

segmentation
error

Dense = 4.49 mm
Sparse = 2.23 mm Tongue US

Image graph-based analysis + adaptive
temporal regularization using Markov
random field optimization

Computation expensive due to
optimizing too many parameters

Biomechanical [103] Traditional Accuracy 0.62–0.97 mm
X-ray and US

images for tongue
and vocal tract

Harris features + optical flow Sensitive to noise; not practical for
ultrasound as it was trained on X-rays

Multihypothesis
approach [4]

Traditional and
machine learning MSD 1.69 ± 1.10 mm Tongue US images Snake algorithm + particle filter

Computation complexity, needs too
many filter parameters to get
accurate results

Computer vision-based
tongue tracking and
feature extraction [5]

Traditional MSD 0.933 mm Tongue US images
Image denoising + tongue adaptive
localization + feature extraction + data
transformation and analysis

Did not use machine learning for
feature extraction, which limits the
scope of the feature map

Fully automate the
tongue contour
extraction [6]

Traditional MSD 1.01–0.63 mm Tongue US images Snake algorithm + phase symmetry
filter + algorithm resetting

Computation complexity, too
many constraints

Autotrace [104] Machine Learning MSD 0.73 mm Tongue US images Deep learning + translational deep
belief network

High computation cost; limited
training dataset
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Table 1. Cont.

Method Category EV. Measure EV. Result Data Type Core Methodologies Limitation

Enhanced
Autotrace [105] Machine learning MSD 1.0 mm Tongue US images Deep autoencoder Autoencoder has limited ability to

classify features

CNN to automate
the tongue

segmentation [110]
Machine learning MSD

U-net = 5.81 mm
(Dense U-net) =

5.6 mm
Tongue US images U-net + Dense U-net

U-net has limited generalization
capability (Dense U-net) perform better
than U-net but it is slower

BowNet and
wBowNet [112] Machine learning MSD 1.4mm Tongue US images Deep network in landmarks Lack of global feature extraction of

the CNN

TongueNet [113] Machine learning MSD 0.31 pixel Tongue US images Multiscale contextual information +
dilated convolution

Random selection of the annotated
landmarks is not efficient in the method

DCAE-based B-Mode
US [115] Machine learning Word error rate 6.17 % Tongue US images Denoising convolutional autoencoder

(DCAE)

Autoencoder has a limitation of
classifying features in latent space and
difficult to be generalized in
global context

ConvLSTM [116] Machine learning MSE and
CW-SSIM

MSE = 17.13
CW-SSIM = 0.932 Tongue US images CNN + LSTM Limited memory, predicting up to nine

future frames

U-NET and shape-
consistency-based
regularizer [117]

Traditional and
machine learning MSD (2.243 ± 0.026)

mm Tongue US images
U-net architecture + temporal
continuity using
shape-consistency-based regularizer

Temporal continuity can be
computational expensive for
real-time applications

wUnet [118] Machine learning MSD 1.18 mm Tongue US images U-net architecture + VGG19 block
instead of skip connections

VGG19 may add unnecessary features
to the network and cause overfitting

SottoVoce [119] Machine learning
Speech

recognition
success ratio

65%
Tongue US images

+ speech audio
recording

Deep CNN Acoustic sensor is not practical for
smart systems integration
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6. Conclusions

Various methodologies have been employed to extract tongue contours from ultra-
sound images, with varying degrees of success. There are advantages and disadvantages
to each methodology. This paper presented methods for tongue contour segmentation
from ultrasound images using two main categories of techniques. The first category was
traditional image analysis. The second one was machine learning-based techniques. The
traditional techniques relied mainly on active contour (snake algorithm), shape consistency,
and graph-based methodologies. Machine-learning-based algorithms used mainly CNN,
U-net, and LSTM architectures.

The significance of this review article is to provide the researcher with a comprehen-
sive quantitative and qualitative evaluation of the tongue contour tracking techniques in
ultrasound images.

Based on the results, the machine-learning-based algorithms are superior to other tech-
niques considering the segmentation accuracy and the proposed qualitative measure such
as usability in real-time application, image quality, and shape consistency. The traditional
techniques are robust for feature extraction and postprocessing applications, as they are
specifically optimized for the tongue segmentation task.

We conclude that the key to obtaining more accurate results is by using a hybrid
combination of machine learning and traditional techniques. Machine learning is efficient
as a real-time tongue segmentation tool. On the other hand, the use of traditional algorithms
can enhance a machine learning model output by using interactive user segmentation tools
during the training and postprocessing stages.

Author Contributions: Conceptualization, F.G.; methodology, K.A.-h.; investigation, K.A.-h.; data
curation, K.A.-h.; original draft preparation, K.A.-h.; review and editing, F.G., I.T.C., A.K. and K.A.-h.;
supervision, F.G.; funding acquisition, F.G. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was supported by a grant from the National Research Council of Canada
(NRC) through the Collaborative Research and Development Initiative.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

2D Two dimensions
3D Three dimensions
ASM Active shape model
CNN Convolutional neural networks
CW Complex wavelet
SSIM Structural similarity index measure
CT Computed tomography
DCAE Denoising convolutional autoencoder
EV Evaluation
EPG Electropalatography
EMA Electromagnetic articulatory
ECG Electrocardiography
EEG Electroencephalography
EMG Electromyography
LSTM Long short-term memory
MSD Mean sum of distances
MSE Mean squared error
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ML Machine learning
PMA Permanent magnet articulator
PCA Principal component analysis
RMSE Root-mean-square error
SSI Silent-speech interface
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