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Abstract—In this paper, a Genetic Algorithm is used to solve
the path planning problem for autonomous mobile robots in static
environments. The goal of the path planning problem is to find
a valid and practical path between two points while avoiding
obstacles and optimizing a number of criteria including path
length, safety, and distance from obstacles. A quality function
is proposed to evaluate the optimization approach for different
scenarios. Experimental results show that enhanced solutions
can be achieved in less time using optimal values of the search
algorithm parameters.

Index Terms—Path Planning, Evolutionary Algorithms, Ge-
netic Algorithms, autonomous robots, Metaheuristic Optimiza-
tion.

I. INTRODUCTION

Missions requiring autonomous robots and vehicles have
included exploring Mars, operating nuclear power reactors,
and keeping watch over hostile forces on the battlefield. The
development of more intelligent autonomous mobile robots for
future battles to minimize human casualties is one of these
applications. Path planning in violent situations ,which is the
application of the paper’s subject, is one of the most significant
challenges facing the development of such systems. It is
important to note that path planning is essential for achieving
autonomous control of the mobile robot which supports the
efficient use of it. Realizing effective path planning in complex
environments with various obstacles and uncertainty while
taking into account various requirements such as obstacle
avoidance, trajectory validity, real-time planning capability,
and a sufficient path length, is still a significant challenge [1].

A genetic algorithm (GA) [2] is a search technique that
relies on the survival of the fittest individuals among a set of
individuals in each generation. The mobile robot path planning
problem can be formulated as a GA-based search process with
the solutions encoded as chromosomes. Genetic operators,
including selection, crossover, and mutation, are repeatedly
applied in a stochastic way to generate new solutions starting
with an initial population of random chromosomes. The set of
chromosomes in a given population are evaluated using a suit-
able problem-dependent fitness function. Good chromosomes
have a high probability to be selected for the crossover and
mutation operations to pass their good characteristics to the
next generations to obtain an optimal or near-optimal solution

after generating sufficient number of generations based on
some stopping criteria [3].

Several approaches have been proposed in the literature to
optimize the autonomous mobile robots path planning prob-
lem. Liu proposed enhanced mutation and selection operators
have been proposed to solve the Unmanned Aerial Vehicle
(UAV) swarms path planning problem [4]. Simulation results
show that the proposed genetic operators allow the algorithm
to efficiently achieve optimal solutions. Y. Pehlivanoglu and
P. Pehlivanoglu [5] proposed an enhanced population initial-
ization method to optimize autonomous UAVs path planning
for target coverage problems at the aim of accelerated search
convergence. R. Shivgan and Z. Dong proposed an energy-
efficient GA for drones path planning [6]. The proposed
approach relies on minimizing the number of turns in the
paths with a reduction of energy consumption of up to 5
times compared to greedy search. W. Rahmaniar and A.
Rakhmania [7] presented path planning improvements for a
mobile robot using genetic algorithms in an environment .The
GA operators are proposed to accelerate the evolution of
individual populations in the path.

The performance and efficiency of genetic algorithms de-
pend on the encoding approach used to map real-world solu-
tions to chromosomes accessible to the algorithm, the genetic
operators used during the search process, and the parameter
settings of these operators [8]. In this work, the path planning
problem for mobile robots is formulated as an optimization
problem that can be solved using genetic algorithms. Several
genetic operations are used and systematically tuned to find
optimal paths. The proposed search methodology is evaluated
for different scenarios using a quality function that measures
both the path quality and the speed of the search process.

The remaining of this paper is organized as follows; Section
II presents the formulation of the autonomous mobile robot
path planning problem as an optimization problem. The eval-
uation criteria used to evaluate the proposed approach is pro-
vided in Section IV. The proposed genetic search methodology
is introduced in Section III. Experimental results are presented
in Section V. Finally, Section VI concludes the paper.
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II. PROBLEM FORMULATION

A. search space

In a two-dimensional plane, the mission area of dimensions
L × W include N navigation points (x, y) and X static
obstacles. The goal of a mobile robot is to reach a destination
point (xn, yn) from an initial point (x0, y0) through a set of
navigation points while avoiding obstacles in its path. There
are (n-1)! possible solutions. The search will start with a
population of P randomly selected individuals, where each
individual represents a complete solution from the initial state
to the goal state. Using a selection operator, the fittest solution
will be selected to produce the offspring. Then, in a specific
individual, a different type of cross-over will occur. The
mutation operator will then apply for each offspring to improve
the population diversity.

B. Model Constraints

A safe distance Rmin from the obstacle to the robot is
considered. The distance between the robot and the obstacle
should not be shorter than safe distance [9] which is expressed
by:

Dij −Rmin ≥ 0 (1)

where Dij is the distance between the robot in i-th naviga-
tion point and the j-th obstacle.

C. Fitness Function

The path is made up of a series of navigation points (x,
y) from i=0 to i=n, where (xi, yi) is the coordinate in two
dimensions for the i-th navigation point and (xn, yn) is the goal
point. Our goal is to minimize the path length while taking
into account our constraint .The path length, that is determined
by these locations, can be expressed using Euclidean or
Manhattan distance measures as shown in Equations 2 and
3, respectively, with Manhattan distance used in this work.

H =

n∑
i=0

√
(Xi+1 −Xi)2 + (Yi+1 − Yi)2 (2)

H =

n∑
i=0

(xi+1 − xi) + (yi+1 − yi) (3)

III. METHODOLOGY

A. Encoding Approach

Binary, real-number, and float encoding are the three main
types of chromosomal encoding. Binary-based individual en-
coding is simple to use and takes less time to calculate.
However, there is an issue when converting from a continuous
variable to a binary number, which makes it challenging for
the method to find an accurate solution for high-dimensional or
continuous optimization problems. In this study, real number
encoding, which has great calculation accuracy and can be
easily optimized using genetic algorithms, is used to address
the problem. where each navigation point will be represented

with a number between 0 and n, where 0 represents the initial
state and n represents the goal state. So each individual must
start with zero and end with n. The most natural way to present
the tour is probably by using path representation. For example,
if n equals 8, a tour 0→1→4→7→2→5→3→6→8 can be
represented simply as (0 1 4 7 2 5 3 6 8) .

B. Obstacles avoidance

To make sure that the algorithm works safely and the robots
navigate without any probability of crushing any obstacles, a
safe distance Rmin from the obstacle to the robot is consid-
ered. The algorithm checks at first the distance between all
navigation points and the defined obstacles to ensure it is a
safe distance. The algorithm then generates the population and
calculate the distances for all solutions and all obstacles. If
the distance is larger than the safe margin, the algorithm will
work with the same initialization. Otherwise, the algorithm
will break and increase population size by 20 and regenerates
new chromosomes.

C. Adaptive Restart Condition

In this study, an enhanced GA called adaptive restarting
GA [10] is adopted to improve the global search capability
of the algorithm. With an adaptive restarting procedure, the
proposed GA can jump out of the local optima and find
the global optimum with a high success probability. This
approach depends on the value addressed for the adaptive
restart condition. The algorithm normally starts the exploration
with an evaluation, crossover, and mutation operators. Each
generation will save the solution with the minimum cost
function until the number of generation numbers equals the
value of the adaptive restart condition. The algorithm will
calculate the absolute difference between the current optimal
and previous solutions and then calculate the sum of the
differences. If the sum is less than 0.00001, that means there
is no enhancement of the solution, which means the algorithm
is stuck in the local optimum so that the algorithm will break
and restart. Otherwise, the algorithm starts the new generation
with the best solutions. The check of enhancement will repeat
each generation until the algorithm reach the desired number
of generations.

IV. EVALUATION APPROACH

In order to test the effectiveness of the algorithm and
find the best value for tuning parameters such as population
size, the number of generations, the Number of crossover
chromosomes, and the Number of the mutated chromosome,
different scenarios of robot path planning will be carried
out by tuning the algorithm parameters while taking into
consideration the time to reach the optimal solution . Each
scenario’s quality function will be calculated and compared
to the rest. The case with the maximum quality will be
considered an optimal solution. The quality function is a
function of total path length, population size,the number of
pairs of chromosomes required for crossover, the Number
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Table I: Impact of population size

Population size Time (second) path length Quality function
10 4.35 123.8 4.78
30 4.28 121.6 5.14
50 3.76 121.1 6.32
70 3.24 120.5 7.80
90 2.65 119.9 10.11
100 2.58 119.9 10.67
150 2.97 120.3 10.54

of chromosomes required for mutation, and the Number of
generations. Which is expressed by:

Q = [0.6 [1/L] + 0.1P + 0.1G+ 0.1C + 0.1M ]/T (4)

Where:
L: The total path length
T: Time to find the solution
P: Population size
G: The number of generation
C: Number of pairs of chromosomes required for crossover
M: Number of chromosomes required for mutation

V. RESULTS AND DISCUSSION

Experimental results reported in the following subsections
are obtained using MATLAB GA solver that has the advantage
of performing mathematical computations in a simple way
while focusing on tuning the algorithm parameters to enhance
the quality of the obtained solutions.

A. Impact of Population Size

In this subsection, we investigate the impact of the pop-
ulation size on the performance of the proposed GA-based
path planning approach for N=10, number of generations=100,
number of chromosomes required for crossover=0.5P, and the
Number of chromosomes required for mutation=0.5P. The
population size is varied from 10 to 150. As shown in Table I,
increasing the population size decreases the time required to
reach the optimal solution at first, and then for a large value of
P, the time starts increasing. At the same time, decreasing the
total path length, which is what we were looking for, then for
a large value of P, the path length increases again. Hence,
a trade-off between the time needed to reach the optimal
solution, the quality function value and the total path length
is needed. The case with P equals 100 is the best with search
time of 2.58 s, quality value of 10.67, and total path length of
119.9. Figure 1 shows the total travel distance (path length)
of obtained solutions with generations for P=100.

B. Impact of Crossover Operator

The selection operator relies on the quality of the chro-
mosomes in the population to determine which parents will
be used for crossover to mate and generate new offspring.
The crossover then brings up a new offspring based on the
exchange point chosen with particular parts of the parents.it
is more likely that the new offspring would contain good
parts of their parents, and consequently perform better as

Figure 1: p=100, c=25, M=50 ,G=100

Table II: Impact of crossover rate

Crossover rate Time (second) path length Quality function
10 4.63 123.8 5.6
30 3.95 121.8 7.36
50 3.68 121.1 8.64
70 2.15 119.9 14.6
90 2.46 119.9 13.82

100 2.65 119.9 12.83

compared to their parents [11]. Table II shows the impact of
crossover on the quality of the solution for N=10, number
of generations=150, population size=100,and the Number of
chromosomes required for mutation equals 0.5C. As shown in
this table,increasing crossover rate (or the number of chromo-
somes required for the crossover) decreases the time needed to
find the best solution and the total path length while increasing
the value of the quality function. Large crossover rate results in
more exploration during the search process with a constant rate
of mutation (exploitation). The solution’s quality decreases
because the time to reach the optimal solution will increase.
Figure 3 illustrates how the quality of the solution improved
in the case of a crossover rate equal to 0.7.

C. Impact of Mutation Operator

Mutation is a small random tweak in the chromosome to get
a new solution. It is used to maintain and introduce diversity
in the genetic population and is usually applied with a low
probability. The GA gets reduced to a random search if the
probability is very high. The mutation is the part of the GA
related to the exploitation of the search space. This section
examines different cases with different mutation rates to test
the influence of exploitation rate on time to reach the optimal
solution, the total path length, and the value of the quality
function. From the previous section, the best value for P is
100, for G is 150, and For C is 35.

As shown in Table III, for a mutation rate from 10 to
30, increasing the number of chromosomes required for the
mutation will decrease the time to reach the best solution and
the total path length while increasing the value of the quality
function. However, when the mutation rate increases, or the
exploitation rate increases, the total path length increase, and
the time to reach the optimal solution will decrease.
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Table III: Impact of mutation rate

Mutation rate Time (second) path length Quality function
10 2.51 120.3 11.75
20 2.25 119.9 13.55
30 2.04 119.9 15.44
40 2.37 120.3 13.71
50 2.98 120.5 11.24

Figure 2: Time vs quality function for case 1, case 2, case 3,
and case 4

D. Overall Performance and discussion

Population size, number of generations, crossover rate, and
mutation rate are very important parameters that directly
influence the quality of the genetic algorithm solution. To
study the overall impact of these parameters, different cases
were tested by changing one parameter while others were
constant. Starting with random initialization for G, C, and M.
we changed P from 10 to 150. The best value of population
size was determined, which is the population size gets the best
solution with minimum time and high-quality function value.
To test the influence of the number of generations, we started
with random initialization for only C and G while using the
best P value found in the first section. Then for the number
of chromosomes required for crossover, the best value found
for population size and the number of generations used, and
so on.

In Figure 2, the first case represents the case with the best
value for P and the random value for the rest three parameters,
which explains the low value for the quality function and
a large value for the time. In the second case, only two
parameters have a random value, while the rest equals its best
value. As shown in the figure for the four cases, the quality
function value increased from 10.67 to 15.44, and the time
decreased from 2.58 to 2.04.

Based on the obtained results in this section, it is clear
that large-enough population size leads to better convergence
of the algorithm to an optimal solution. Nevertheless, having
a large population size will not be a good idea when the
search space is small. The crossover and mutation rates are
hyper-parameters that control the rate at which solutions
are subjected to crossover and mutation operations. The
higher the crossover rate, the more crossovers perform, so
the more diversity (in terms of solutions/chromosomes) is

introduced.Mutation, on the other hand, can prevent premature
convergence but if the mutation rate is very high, the algorithm
becomes a random search. Hence, the value of the mutation
rate is typically not high.

VI. CONCLUSION

This work investigates the impact of the main parameters of
the genetic algorithm, including population size, mutation rate,
crossover rate, the number of generations, and the population
size on the performance of efficiency of the path planning
problem for autonomous mobile robots. Experimental results
show that systematic tuning of these parameters result in faster
convergence of the algorithm to better solutions. As a future
work, we intend to to increase the algorithm’s strength in the
path planning problem to handle a swarm of robots taking into
account different robot constraints.
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