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Abstract: This paper proposes a hardware realization of the crossover module in the genetic algorithm

for the travelling salesman problem (TSP). In order to enhance performance, we employ a combination

of pipelining and parallelization with a genetic algorithm (GA) processor to improve processing speed,

as compared to software implementation. Simulation results showed that the proposed architecture

is six times faster than the similar existing architecture. The presented field-programmable gate array

(FPGA) implementation of PMX crossover operator is more than 400 times faster than in software.

Keywords: genetic algorithm; crossover; FPGA; TSP

1. Introduction

1.1. Genetic Algorithm

Genetic algorithm (GA) is a robust stochastic optimization technique that is based on the principle

of survival of the fittest in nature. The GA has an ability to provide optimum solution to a wide range

of problems. GA starts from the initial population of randomly generated individuals, each of which is

an encoding of a solution to the problem. The overall rule for how to select parents from the population

for reproduction is survival of the fittest. Individuals are chosen to mate with probability proportional

to their fitness. GA evolves the population over generations using crossover and mutation operations.

Crossover operator has a role in the extraction of good characteristics from both parents [1] and the

mutation is used to avoid converging to local optimal. In each iteration, the termination criterion

is checked and if it is reached, the whole GA procedure stopped. The two main criteria to evaluate

the effectiveness and terminate the GA are the maximum number of generations and a satisfactory

fitness value.

1.2. Hardware Implementation of GA

As GA is very effective in solving many practical problems, speeding up its time-consuming

operators is important in its applications [2]. The need for hardware implementation of GA arises

from the massive computational complexity of the algorithm that incurs delay to the execution of GA

implementation in software. Since the GA modules are intrinsically parallel algorithms and the basic

operations of a GA can be executed in a pipelining fashion, speed up could be achieved when they are

implemented in hardware, including with Field-Programmable Gate Array (FPGA) [3]. One of the

main advantages of FPGAs is that they are compatible with pipelined and parallel architectures that

can lead to high computing performance. In this paper, the associative cache mapping technique is

used for parallelization. In this cache mapping technique, the tag bits of an address received from the
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processor are compared to the tag bits of each block of the cache to see whether the desired block is

present. We discuss, in the next sections, how this technique is used to perform comparisons in parallel.

1.3. Travelling Salesman Problem

The TSP is the problem of a salesman who aims to find the shortest possible path to visit a specified

set of cities without repeating. Many practical applications require the modelling and solving TSP, such

as overhauling gas turbine engines, computer wiring, the order-picking problem in warehouses, vehicle

routing, mask plotting in PCB production, distribution system, X-ray crystallography, job scheduling,

circuit board drilling, and DNA mapping [4]. As TSP is an NP-hard (nondeterministic polynomial

time) problem in combinatorial optimization, it has a large solution space, thus it is necessary to use

heuristic searching methods. GA is one of the many alternatives that our results show that is not well

suited to TSP. In this age, neural networks (NNs) are more popular than GA, but GAs are still used

because NNs require a lot of data, while GAs do not [5].

1.4. Importance of Crossover Module in GA

Generally, the GA modules in terms of high computation complexity and hence long execution

time are in the following descending order: Fitness function, crossover and selection, mutation and

breeding, and initial population. The crossover module plays a larger part in computational complexity

(from the hardware perspective) and accuracy (from the software perspective) as compared to the

other modules. Therefore, the main goal of this work is FPGA implementation of the crossover module

in GA to solve TSP. The fitness value of a chromosome in TSP can be calculated as simply the total

distance to travel to all the cities in the specified order. Therefore, it can be implemented using a simple

circuit and there is no computational complexity.

What makes our proposed architecture unique, compared to previous works, is that we use only

two memories to store the parents and children, which results in reducing the number of required flip

flops by half. Moreover, the associative cache mapping technique is used for processing parallelization,

thus speeding up the processing time.

The rest of the paper is organized as follows. Section 2 gives a brief introduction to partially-mapped

crossover technique and surveys previous related works. In Section 3, we first briefly discuss the

challenges in hardware implementation of GA and then describe in detail the design methodology

and the hardware implementation details of the proposed crossover module. Section 4 reports the

simulation results at various design sizes to verify the functionality of the designed module. The paper

will conclude with a summary of our results and a discussion of future plans.

2. Crossover Technique and Related Work

2.1. Existing Work in Hardware Implementation of Crossover Module

In Reference [6], the crossover operators are classified into three categories such as standard

crossovers, binary crossovers, and real/tree crossovers, which are application dependent. Various

crossover techniques are implemented in hardware for different applications to speed up the

computation, as compared to software. In order to get some ideas about the hardware implementation

of crossover, we have investigated some different crossover architectures. The following is a brief

survey of existing hardware designs of crossover that shows how different crossover techniques can

be implemented.

In Reference [7], a GA engine is proposed that supports one-point and two-point crossovers.

The proposed GA processor in Reference [8] has three methods of crossover including one-point,

two-point, and uniform crossovers.

A parallel GA system on four Virtex-6 FPGA is proposed in Reference [9]. Since the selection,

crossover and mutation operators deal with two individuals sequentially to generate a new offspring, these

operators are combined in a unit to increase the performance. Their system supports different crossover
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methods for different problems including one-point crossover for binary chromosomes, multiple-point

crossover for permutation chromosomes, and blending crossover for real-valued chromosomes.

In Reference [10], the adaptive GA is designed on FPGA, based on modular design that supports

two-point crossover. Figure 1 shows two crossover methods provided in Reference [11], named as

one-point and multi-point crossover.

The crossover module of [12] implements single point crossover. As seen in Figure 2, the architecture

consists of four bit splitters (CMDIV), two identical crossover submodules (CMPQ), and two

concatenators (CMCCAT). After the two input chromosomes are split into two halves using CMDIV

modules, the crossing is performed in CMPQ modules. Then, the least significant half of the variables

will be concatenated to generate one new chromosome and the same procedure is applied to the most

significant halves to generate the other chromosome.

Figure 1. Crossover operators proposed in [11]. (a) One-point crossover and (b) multi-point crossover.

Figure 2. The proposed architecture for crossover module in [12].

2.2. Existing Work in Hardware Implementation of Partially-Mapped Crossover (PMX) Technique

The selection of the crossover operator plays an important role on the performance of GA.

The crossover technique used in this implementation is Partially-Mapped Crossover (PMX). It begins

by picking two random cut points along the parent strings. In the first step, the segments between

the cut points are copied from the parent 1 to the offspring 2 and from the parent 2 to the offspring 1.

A series of mapping is also defined based on these segments. In the next step, all the elements before

the first cut point and after the second one are copied from the parent 1 and parent 2 to the offspring 1

and offspring 2, respectively. However, in TSP problem, this operation might result in an invalid tour

because an offspring may get duplicate cities. In order to overcome generating an invalid tour, if a

number is already present in the offspring, it is replaced according to the previously defined series of

mappings. For example, given two parents with cut points marked by vertical lines: p1= (3 | 0 1 4 5 | 2)

and p2= (2 | 1 3 5 4 | 0) the PMX operator will define the series of mappings (0↔1, 1↔3, 4↔5) and

produce the following offspring: o1= (0 | 1 3 5 4 | 2) and o2= (2 | 0 1 4 5 | 3).

Since, in this paper, PMX crossover technique is investigated, the following is a detailed review of

PMX implementation. In Reference [5], the GA algorithm is implemented in a software application
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developed in C++ language and only the crossover module is implemented in FPGA. The proposed

architecture of crossover circuit is depicted in Figure 3. As we compare our results to this work in

Section 4, we will discuss their proposed architecture in more details. Two special 10-bit registers store

the cut points are randomly chosen by the software application. The actual length of a tour in TSP

problem is stored in the Max register in Figure 3. The architecture supports tours composed of, at most,

1024 cities, therefore, there are four memories of size 10 × 210 to keep parent and offspring samples.

In order to performing the crossover operation, four additional memories are used. These memories

are complex maps and simple maps that are shown in Figure 3: “CM1” and “CM2” of size 10 × 210 and

“SM1” and “SM2” of size 1 × 210. Every time a city is written to parent memories, the simple maps will

be reset. After that, the segments between the cut points are swapped. Each time a city c1 from the

“Parent 1” is transferred to the “Offspring 2”, a value “1” is written to the simple map “SM2” at the

address c1. The same thing occurs with the second parent and “SM1”. At the same time, the value

c1 and c2 are stored at the address c2 and c1 in the complex map “CM1” and “CM2”, respectively.

The next step is copying all the cities before the first cut point and after the second cut point from

the “Parent 1” to the “Offspring 1” and from the “Parent 2” to the “Offspring 2”, and if there is any

repeating cities, it must be resolved. After a city c is read from the “Parent 1”, the value of address c in

“SM1” should be checked. If this value is “0”, then this city can be copied to the “Offspring 1”, and if

this value is “1”, it means that “Offspring 1” has already included this city. In order to replace it with

some other cities, the complex map “CM1” is employed, as shown in the flow-chart in Figure 4.

Figure 3. The proposed architecture for realizing the crossover operation in [5].

Figure 4. Filling of the “Offspring 1” before the first cut point in [5].

Another hardware implementation of PMX crossover is presented in [13]. As is shown in Figure 5,

in their architecture, cross-bit are set to No. 9 and No. 17, that is the binary code of the 4th, 5th, and 6th

city counted from the right side of the code. The 9th to 17th bits of individual are put into the left of b

individual, and b into a, and then the repetitious city serial number is removed from the original one.
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Figure 5. Crossover process in [13].

3. Hardware Implementation

3.1. Challenges in Hardware Implementation of GA

There are three main challenges in FPGA implementation of GA including the data flow, the amount

of hardware resources and the size of memory. Since different operations should be done on one set

of data, a lot of data will need to be accessed from different operational modules and control logic

would require lines to all modules’ inputs. Since GA requires a modular architecture, this would pose

a long routing on FPGA. The hardware ability to parallelize offer great opportunities to speed up

GA operation, but the amount of hardware resources needed in such a hardware solution is another

important constraint for hardware implementation. This kind of hardware solution may become too

costly, and hence much less practical to use. Since GA requires a large memory to store the input netlist

and intermediate population, the size of required memory is a bottleneck. In this paper, in order to

achieve improvement in processing speed and hardware features of the implemented architecture,

we aimed to reduce the size of memories and shorten the paths in data flow. As can be seen in

Section 2, in most of the hardware implementations of the crossover module, four memories are used

to keep parent and offspring samples, but we propose and manage to use only two memories to store

the parents and children. Some temporary registers are used to facilitate the generation of children.

Moreover, the associative cache mapping technique is used for parallelization and speed up of the

processing time, to be discussed in details in the following subsection.

3.2. Proposed Architecture for PMX Crossover Module

The overall architecture of this work can be divided into two main parts including memories and

control logic. In this subsection, we introduce and discuss the design modules in details. Two memories

are provided to store parents and generated children. In the control logic, the main part is a state

machine. Besides, in order to speed up generating children using associative cache mapping technique,

the number of chromosomes determines the number of comparators. Moreover, there are three counters

to control loops and some multiplexers.

The main concept of our proposal is shown in Figures 6–8. The children are generated in the same

memories that parents are stored. As can be seen in Figure 6, child 1 and 2 are generated in parent 2

and 1 memories, respectively. First, child 1 is generated in parent 2 so it needs to store parts P4-1 and

P6-1 in two temporary memories.
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Figure 6. Basic idea of proposed architecture.

In the next step, parts P1-2 and P3-2 will be filled up by copying the elements of the parts P1-1 and

P3-1, respectively. After this step, child 1 is ready. In order to eliminate redundancy in the generated

chromosomes, some logics are implemented that will be discussed in the following sections.

Figure 7. Generating child 1.

As illustrated in Figure 8, parts P4-2 and P6-2 will be filled up by the elements of the parts P4-1

and P6-1, respectively.

Figure 8. Generating child 2.
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The main part of the control logic in this architecture is a state machine as shown in Figure 9.

Moreover, there are three counters to control loops and some multiplexers. Counter k counts the

elements that are compared and copied from parts P1-1, P3-1, P4-1, and P6-1 to the parts P1-2, P3-2,

P4-2, and P6-2, respectively.

Figure 9. State machine of control logic.

The designed state machine works as follows. After activation, it enters the COPY_SMPL state to

copy part P4-1 and part P6-1 into the temporary memory as shown in Figure 6. Top and bottom of the

temporary memory are initialized in parallel. The state machine stays in this state until the temporary

memory is filled up. After that, we need to generate parts P1-2, P3-2, P4-2, and P6-2, respectively.

To generate each part, three states are considered: CMP1, CMP2, and COUNT. For parts P1-2 and P4-2

that are located on the top of the chromosomes, these states are named TOP and for parts P3-2 and

P6-2 that are located on the bottom of the chromosomes, these states are named BTM. Based on how

many repeated genes there are in each part, the state machine transits between states. Table 1 shows

the state transition triggering events of the state machine. In the proposed architecture, if there are m

cities in each chromosome, m comparators are implemented to compare parent and children’s genes.

These comparators are used to overcome generating invalid tour and finding mapping pattern.

Table 1. Transition conditions for state machine.

Condition Number Description

1 Two temporary memories are not filled up
2 There is redundancy between part P2 or P5 and the other parts
3 There is no redundancy between part P2 or P5 and the other parts
4 Counter k reaches its maximum values
5 Counter k does not reach its maximum values
6 Two temporary memories filled up

In order to implement comparators’ logic, the associative cache mapping technique is used.

This cache mapping method is based on parallel comparison of tag bits of the cache to see if the tag

bit of an address received from the processor is present. Cost of an associated mapped cache is high

because it needs to search all the tag patterns to determine whether a block is in cache, and this infers

high hardware cost. In our implementation, this technique works as follows. For example, for filling
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up part P1-2 using elements of the part P1-1, sample i of P1-1 is compared to all elements of P5. If it is

equal to none of them, it is copied to the address i of part P1-2. Otherwise, it is replaced according to

the mapping procedure we explain above.

4. Experimental Results and Comparison

Since most of the existing hardware implementations are complete GA algorithm [9,11,12], they

reported the quality of solutions and the search speed as performance metrics, so, there is no crossover

performance evaluation individually and independently. Whereas detailed information of crossover

module is presented only in Reference [5], therefore, we can only compare our simulation results

with the reported results of that work. As we compare our implementation to the one proposed in

Reference [5], from now on we refer to it as the baseline architecture.

In almost all of the related works, RAM_block is used to store parent and offspring samples.

In our proposed architecture associative cache mapping technique is used to speed up the comparisons,

so memories cannot be implemented using RAM_blocks, therefore, we have used flip flops to store

parent samples. Thus, in order to have a fair comparison, we calculate the number of required flip

flops. If there are m cities in each chromosome, each sample is presented using [log2 m ] + 1 number of

bits. As a result, the size of each memory (to store each parent) and the temporary memory are equal

to m× [log2 m ] + 1. As can be inferred from the proposed architecture, the total number of flip flops is

equal to 3m× ( [log2 m ] + 1 ). In a similar way, we can calculate the total number of flip flops for the

baseline architecture, which is (2 + 6m ) × ( [log2 m ] + 1). Thus, the number of flip flops used in our

proposed architecture is less than half of what is used in the baseline architecture.

We used Virtex 7 FPGA in our simulations while in the baseline architecture, Virtex E FPGA

is used as the hardware platform that we do not have access to, so that we cannot simulate our

implementation using the same platform. Since slice structure of different FPGAs are not the same,

comparing the number of slices is not fair. Therefore, we need a fair method for area comparison.

While Look Up Tables (LUT) are not the same in different FPGAs, comparing the number of LUTs is

the fairest available approach. Each slice of Virtex E contains two LUTs. As is reported in baseline

architecture, the total number of slices utilized is 149 so the number of LUTs are 298. Table 2 shows

implementation results. As can be seen, the proposed architecture has satisfactory results in all cases

except 1024 cities, where the problem becomes too complex due to high parallelization for the simulator

to handle. Figure 10 shows the number of used registers and LUTs for our proposed architecture.

As mentioned previously, our main goal is to improve the processing speed and since we are comparing

two hardware implementations, there is a tradeoff between speed and area; it makes sense that we

have obtained higher speed at the expense of the larger area. The large number of comparators in our

architecture imposes area constraint, and the maximum size that can be implemented is 1024.

Figure 10. Register and LUT utilization of proposed architecture.
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Table 2. Crossover module synthesis results on FPGA.

Number of Cities Registers LUT Power (W) Max Clock Frequency (MHz)

128 3820 6487 3.39 256
256 8621 20193 11.91 247
512 19138 43312 21.00 201

1024 42302 776896 138.86 unavailable

Since the number of clock cycles in our proposed architecture is strongly dependent on cut points

chosen and mapping pattern, it is not a fixed number for each size of chromosome. To apply mapping

pattern, in addition to memory reading/writing operations, some comparisons are needed to ensure

only valid tours are constructed. As a result, the greater distance between the cut points results in

a faster completion of the PMX crossover in FPGA. So in order to evaluate the speed of the design,

20 samples with different conditions are run for each size of chromosome and the arithmetic average

and standard deviation of them are shown in Figure 11. As can be seen, it has a linear trend with

acceptable deviation.

Figure 11. Speed variation for different chromosome sizes.

To draw a speed comparison between baseline and our architecture, we consider the hardware

speed and how much speedup is obtained as compared to the software. The number of clock cycles

for baseline and our proposed architecture are depicted in Figure 12. The speedup for different size

of chromosomes are not the same. As can be seen, by size increasing, our proposed design performs

much faster. Based on what is reported in Reference [5], the average number of clock cycles for

performing the crossover in software is equal to 2,486,190. The software version was based on the C++

language and executed on a PentiumIII/800MHz/256MB running Windows2000. Average speedup of

the baseline and our architecture, as compared to the software are 22.8 and 1338, respectively. As can

be seen, crossover operator is executed in FPGA much faster than in software and our design speedup

is around 60 times more than baseline implementation. Since simulation shows no promising results,

we did not pursue the actual implementation on FPGA for further investigation.
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Figure 12. Speed comparison.

To study the effect of comparator count on the area and speed, we decreased the number of

comparators by 75% and comparisons are done serially. To perform the same number of comparisons,

the remaining comparator logics had to be utilized multiple (depending on the cut points) times in a

serial manner. The serialization of the comparison operations negatively affected the speed which was

expected. Surprisingly, the area increased by 40% as well. We suspect that the extra logic needed to

implement the serialization logic causes the area overhead. This shows that the main architecture is

more optimized regarding area and speed.

5. Conclusions and Future Work

In this paper we presented a hardware implementation of Crossover module to solve TSP. In order

to decrease processing speed, as compared to software implementation, we used the associative

cache mapping technique. As a result of utilizing this technique, our proposed architecture is around

2.7 times faster in hardware and around 60 times faster in software rather than the architecture

proposed in Reference [5]. The results of experiments showed that the proposed architecture of PMX

crossover operator is executed in FPGA more than 1300 times faster than in software. As the proposed

architecture utilizes large scale parallelization, no result is obtained in terms of area requirement for

a larger number of cities. However, it is well suited for real time applications like fog and cloud

computing and scheduling [14], where the number of cities is typically smaller.

In this project only the crossover module of GA is implemented. Possible future work involves

implementation of the other modules and evaluation of the complete system. Another interesting

future direction would be hardware implementation of the other crossover techniques and comparing

them in terms of processing speed, size of required memories, and resource utilization.
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