
Linear Processor Array Architectures for Similarity
Distance Computation

Awos Kanan
Dept. of Computer Engineering

Princess Sumaya University for Technology
Amman, Jordan

a.kanan@psut.edu.jo

Fayez Gebali
Dept. of Electrical & Computer Engineering

University of Victoria
Victoria BC, Canada

fayez@uvic.ca

Atef Ibrahim
Dept. of Computer Engineering

Prince Sattam Bin AbdulAziz University
Al-Kharj, Saudi Arabia

aa.mohamed@psau.edu.sa

Kin Fun Li
Dept. of Electrical & Computer Engineering

University of Victoria
Victoria BC, Canada

kinli@uvic.ca

Abstract—Processor array architectures have been employed,
as an accelerator, to compute similarity distance found in a
variety of data mining algorithms. However, most of the proposed
architectures in existing literature are designed in an ad hoc
manner. Furthermore, data dependencies have not been analyzed
and often only one design choice is considered for the scheduling
and mapping of computational tasks. In this work, we present
a systematic technique to design linear processor arrays for
the computation of similarity distance matrices. The technique
employed is used to define the computation domain of the
algorithm, with time restrictions on input and output variables.
Six scheduling vectors and their associated projection matrices
are generated to illustrate our systematic technique. The six
possible design options obtained are analyzed in terms of area and
time complexities. We are also able to derive a previously existing
processor array in the literature by modifying the scheduling
vector for one of the proposed architectures. Field Programmable
Gate Array (FPGA) Implementations show that our proposed
architecture achieves better performance in both speed and area.

Index Terms—Similarity measures, data mining, parallel ar-
chitectures, design methodology, processor arrays.

I. INTRODUCTION

With the advances in computing and data storage, huge vol-

umes of data are being collected by governments, businesses,

universities, and other organizations. As the data collection

rate increases, the gap between our understanding of such data

and the knowledge hidden in it becomes larger and larger. To

bridge this gap, novel data mining techniques and algorithms

started to emerge in order to discover meaningful patterns and

knowledge from such large volumes of data. Existing serial

implementations of data mining algorithms are not sufficient

to analyze and process this enormous amount of data in

an effective manner. To satisfy performance constraints and

requirements associated with data mining applications, com-

putation must be accelerated. In [1], different acceleration plat-

forms available for big data analysis have been surveyed. High

Performance Clusters (HPC), Multicore Processors, Graphics

Processing Units (GPU), and Field Programmable Gate Arrays

(FPGA) platforms have been assessed and compared based on

various metrics such as data size, scalability, data I/O rate,

and real-time processing. According to the analysis provided

in [1], FPGA-based hardware accelerators are more suitable

for applications that require high I/O data rates and real-time

processing.

The computation of similarity distance matrices is one of

the computation kernels that is generally required by several

machine learning and data mining algorithms to measure the

degree of similarity between data samples [2]. For several

algorithms such as K-Means [3], SVM [4], and KNN [5],

distance calculation is a computationally intensive task that

accounts for a significant portion of the processing time, espe-

cially when dealing with large and high-dimensional datasets

[6].

Several processor array architectures have been proposed for

accelerating similarity distance computation. In [7], a distance

calculation unit for a VLSI cluster analysis architecture has

been proposed as a K × N 2-D processor array to calculate

similarity distances between N samples of an input dataset

and K cluster centroids. For datasets with large number

of samples N , the proposed architecture is not feasible for

hardware implementation as it consists of a large number

of processing elements (PEs) with numerous input features

being fed simultaneously. In [8], a K × M 2-D processor

array has been proposed to calculate similarity distances

between samples of an M -dimensional dataset and K cluster

centroids. For high-dimensional datasets with large number

of features M per sample, the proposed architecture is not

feasible for hardware implementation due to constraints in

I/O bandwidth and number of pins. In our recent work [9], we

have systematically explored the design space of 2-D processor

array architectures for similarity distance computation. The

employed methodology was able to obtain the architectures

proposed in [7] and [8] and also to identify an additional four

architectures with improved area and time complexities. 2-D

����������	
������������
���	
�����
���������
������������������������������
����
�������
�
����	�����

������ !�"���#�� $��$%!�&���'��������� 614
Authorized licensed use limited to: Princess Sumaya University for Technology. Downloaded on May 07,2024 at 07:42:17 UTC from IEEE Xplore. Restrictions apply.

processor arrays are generally faster than 1-D (linear) proces-

sor arrays as more PEs are used to perform the computation

in parallel. On the other hand, linear arrays are more suitable

for area, power, and bandwidth-constrained applications. In

[10], a linear processor array for the computation of similarity

distance has been proposed. The proposed architecture is

used to calculate similarity distances between data samples

of an input dataset and clusters centroids in a VLSI clustering

analyzer. Input data samples are fed in a feature-serial format.

The proposed architecture has higher time complexity than

other 2-D processor arrays. However, both area complexity

and number of I/O pins have been reduced. In [11], the

authors proposed an FPGA-based linear processor array for

similarity measures computation. The proposed architecture is

used to calculate three similarity measures among all samples

of an input dataset. Most of the existing processor arrays in

the literature have been designed in an ad hoc manner. Data

dependencies have not been analyzed, and only one design

alternative is considered for tasks scheduling and mapping.

In this paper, we present a systematic technique to design

linear processor arrays for the computation of similarity dis-

tance matrices. The employed technique is used to define the

computation domain of the algorithm. Time restrictions on

input and output variables are introduced in order to meet

area and bandwidth constraints. Six scheduling vectors are

calculated, and six possible design alternatives are obtained

and analyzed in terms of area and time.

The rest of this paper is organized as follows: the distance

computation problem is formulated in Section II. In Section

III, the systematic technique used to parallelize distance com-

putation is introduced. Scheduling and projection operations

are presented in Section IV and Section V, respectively. In

Section VI, the proposed architectures are obtained systemat-

ically using the calculated scheduling vectors and projection

matrices. Comparison between the proposed architectures and

implementation results are presented in Section VII. Finally,

Section VIII concludes the paper.

II. SIMILARITY DISTANCE COMPUTATION

Given dataset X of N samples and dataset Y of K samples,

with each sample in the two datasets having M features. A

similarity measure such as Manhattan, Euclidean, or Cosine

distance [2] [11] can be used to generate a distance matrix

D of K ×N elements. The distance between the nth sample

of dataset X and the kth sample of dataset Y is represented

by the value of element D(k, n) of matrix D. In this work,

the calculation of similarity distance matrix using Manhattan

distance between data samples of the two datasets X and Y, is

used to illustrate the introduced concepts and methodologies.

Manhattan distance can be expressed as:

D(k, n) =
M−1∑
m=0

|X(m,n)− Y (k,m)| (1)

0 ≤ k < K, 0 ≤ n < N,

where N and K are the number of samples of datasets X
and Y, respectively, and M is the dimensionality (number

of features) of the two datasets. The emphasis of this paper is

on the parallelization of similarity distance computation rather

than the similarity measure used. Hence, the work presented

in this paper can be generalized to other similarity measures.

Similarity distance computation in the K-Means clustering

algorithm [3], for instance, is performed in the same way

as described in this section. Distances between N samples

of dataset X and the set of centroids of K clusters Y are

calculated in order to identify the closest cluster for each data

sample.

III. PARALLELIZING THE COMPUTATION OF SIMILARITY

DISTANCE

In our recent work [9], we have systematically explored the

design space of 2-D processor array architectures for similarity

distance computation using the methodology proposed by

the Gebali in [12]. In this work, the same methodology is

employed, by using different scheduling and projection oper-

ations, to design linear processor arrays for the computation

of similarity distance matrices.

A. Computation Domain

The computation domain D is defined by the three indices

of the algorithm [13], as shown in Fig. 1. Every point in the

computation domain has three coordinates, represented as:

p =
[
k m n

]t
(2)

Fig. 1: Computation domain.

B. Data Dependencies

In traditional approach, data dependencies are analyzed in

dependence graphs, by showing how output variables depend

on input variables. In this work, however, data dependencies

are analyzed using dependence matrices that show how input

and output variables depend on indices k, m, and n, as

discussed in our work [9]. The dependence matrices of the

����������	
������������
���	
�����
���������
������������������������������
����
�������
�
����	�����

615
Authorized licensed use limited to: Princess Sumaya University for Technology. Downloaded on May 07,2024 at 07:42:17 UTC from IEEE Xplore. Restrictions apply.

algorithm variables X(m,n), Y (k,m), and D(k, n) are given

by [9]:

AX =

[
0 1 0
0 0 1

]
(3)

AY =

[
1 0 0
0 1 0

]
(4)

AD =

[
1 0 0
0 0 1

]
(5)

and the associated nullvectors could be given by [9]:

eX =
[
1 0 0

]t
(6)

eY =
[
0 0 1

]t
(7)

eD =
[
0 1 0

]t
(8)

IV. DATA SCHEDULING

A scheduling function determines the computation load to

be executed at each time step by assigning each point in the

computation domain a time value. All tasks assigned the same

time value will be executed in parallel. Broadcasting an algo-

rithm variable results in assigning all points in its broadcast

subdomain the same time value. Points in the subdomain of

a pipelined variable, on the other hand, are assigned different

time values. When an input variable is broadcast, a copy of

each data element is available to all PEs through a global

broadcast bus, while pipelined input variables are stored by

each PE and passed to its neighbor through a local link in the

next clock cycle. Broadcasting an output variable results in

performing all computations on partial results from all PEs in

the same clock cycle. For a pipelined output variable, partial

result that is generated by each PE is accumulated and passed

to the next PE until the final result is accumulated by the last

PE. One simple scheduling function that is used to schedule

computation tasks is the linear scheduling function [13]:

t(p) = sp (9)

where t(p) is the time value assigned to a point p in the com-

putation domain D, and s =
[
s1 s2 s3

]
is the scheduling

vector. To broadcast an algorithm variable whose nullvector is

e, we must have [13]:

se = 0 (10)

and to pipeline this variable, we must have:

se �= 0 (11)

Conditions in (10) and (11) are the minimum constraints

that can be used to get a valid scheduling function.

Our strategy for arriving at suitable scheduling functions

combines pipelining and broadcast restrictions in (10) and

Fig. 2: Equitemporal zones for scheduling vector s1

(11). We start by choosing to pipeline the evaluation of all

points that lie in a plane perpendicular to one of the three

k-, m-, or n-axes. Next we pipeline the evaluation of all

points that lie on lines in the chosen plane. These lines are

parallel to one of the remaining two axes in that plane. Finally

we broadcast the evaluation of all points in the chosen line.

In total, we have three axes to choose the planes and two

directions to choose the lines in the planes. This gives rise to

six possible scheduling functions. Subsection IV-A illustrates

how this technique is used to derive our first scheduling vector

s1.

A. Calculation of the first scheduling vector s1

Let us choose to broadcast input variable X. From (6) and

(10), we have:

[
s1 s2 s3

]
⎡
⎣10
0

⎤
⎦ = 0 (12)

which implies s1 = 0.

To avoid feeding large number of features simultaneously,

we choose to supply input variable X in a feature-serial format

(i.e., along the m-axis). This implies that for any data sample

n, the time between the calculations for feature m and feature

m+ 1 is one time step:

[
0 s2 s3

]
⎡
⎣ k
m+ 1
n

⎤
⎦− [

0 s2 s3
]
⎡
⎣ k
m
n

⎤
⎦ = 1 (13)

which implies s2 = 1.

We choose to start the first calculation for sample n+1 after

the last calculation for sample n. The time between these two

calculations is also one time step:

����������	
������������
���	
�����
���������
������������������������������
����
�������
�
����	�����

616
Authorized licensed use limited to: Princess Sumaya University for Technology. Downloaded on May 07,2024 at 07:42:17 UTC from IEEE Xplore. Restrictions apply.

[
0 1 s3

]
⎡
⎣ k

0
n+ 1

⎤
⎦− [

0 1 s3
]
⎡
⎣ k
M − 1

n

⎤
⎦ = 1 (14)

which implies s3 = M . Hence, the first valid scheduling vector

is given by:

s1 =
[
0 1 M

]
(15)

Referring to Fig.2, the calculated scheduling vector s1
results in assigning all points on each of the continuous lines

the same time value. These lines are called equitemoporal

zones since the computations for all points on each line are

performed simultaneously [13]. From the geometric perspec-

tive, scheduling vector s1 results in executing all points in a

plane with a fixed value of coordinate n before points in the

plane with next value of n. Within each plane, all points on

a line with a fixed value of coordinate m are executed before

points on the line with next value of m. Points on each of

these lines are executed in parallel.

B. Calculation of the remaining scheduling vectors

V. PROJECTION OPERATION

Linear projection is defined as the mapping of several points

in the n-dimensional computation domain D to a single point

in a k-dimensional domain D̃, where k ≤ n. A projection

matrix P that can be used to perform the projection operation

can be obtained using a set of l = (n−k) projection direction

vectors di that belong to the null space of the projection matrix

and satisfy the condition [12]:

sdi �= 0 (16)

where s is the chosen scheduling vector. In this work, our goal

is to map the points in the 3-D computation domain shown

in Fig. 1 to a 1-D domain. Hence, two projection direction

vectors have to be specified for each of the six scheduling

vectors presented in the previous section. For the scheduling

vector s1 =
[
0 1 M

]
and according to (16), two possible

projection directions could be given by:

d11 =
[
0 1 0

]t
(17)

and

d12 =
[
0 0 1

]t
(18)

These projection directions are then used to calculate the asso-

ciated projection matrix according to the procedure described

in [12]:

P1 =
[
1 0 0

]t
(19)

Table I shows the chosen projection directions and the associ-

ated project matrices for the six obtained scheduling vectors.

TABLE I: Possible projection directions and associated pro-

jection matrices

Scheduling
Vector

Chosen
Projection Directions

Associated
Projection Matrix

s1 = [0 1 M]
d11 = [0 1 0]t

d12 = [0 0 1]t
P1 = [1 0 0]

s2 = [0 N 1]
d21 = [0 1 0]t

d22 = [0 0 1]t
P2 = [1 0 0]

s3 = [1 0 K]
d31 = [1 0 0]t

d32 = [0 0 1]t
P3 = [0 1 0]

s4 = [N 0 1]
d41 = [1 0 0]t

d42 = [0 0 1]t
P4 = [0 1 0]

s5 = [M 1 0]
d51 = [1 0 0]t

d52 = [0 1 0]t
P5 = [0 0 1]

s6 = [1 K 0]
d61 = [1 0 0]t

d62 = [0 1 0]t
P6 = [0 0 1]

VI. DESIGN SPACE EXPLORATION

In this section, we will explore the design space of linear

processor arrays for similarity distance computation using the

calculated scheduling vectors and projection matrices in Table

I.

A. Design #1: using s1 = [0 1 M] and P1 = [1 0 0]

In this design option, each point p =
[
k m n

]t ∈ D is

assigned a time value using the scheduling function:

t(p) =
[
0 1 M

]
⎡
⎣ k
m
n

⎤
⎦ = m+Mn (20)

The projection matrix P1 =
[
1 0 0

]
maps any point p in

the computation domain to the point:

p̃ = P1p =
[
1 0 0

]
⎡
⎣ k
m
n

⎤
⎦ = k (21)

which implies that the resulting processor array is a linear

array along the k-axis with K PEs. All points in the computa-

tion domain with the same k coordinate will map to the same

point, or PE in the projected computation domain. The input

variable X is broadcast, and the broadcast direction is mapped

to the vector:

ẽX = P1eX =
[
1 0 0

]
⎡
⎣10
0

⎤
⎦ = 1 (22)

which implies that input data is fed using broadcast lines along

the k-axis in the projected architecture. Input variable Y is

pipelined since the pipeline condition in (11) is satisfied. The

pipeline direction is mapped to the vector:

����������	
������������
���	
�����
���������
������������������������������
����
�������
�
����	�����

617
Authorized licensed use limited to: Princess Sumaya University for Technology. Downloaded on May 07,2024 at 07:42:17 UTC from IEEE Xplore. Restrictions apply.

ẽY = P1eY =
[
1 0 0

]
⎡
⎣00
1

⎤
⎦ = 0 (23)

which implies that input Y is localized in the projected

architecture. The kth PE only uses the M features of the kth

data sample of input matrix Y. Output variable D is also

pipelined, and the pipeline direction is mapped to the vector:

ẽD = P1eD =
[
1 0 0

]
⎡
⎣01
0

⎤
⎦ = 0 (24)

which implies that output D is also localized. For every M
cycles, each PE generates the distance D(k, n) between the

nth sample of dataset X and the kth sample of dataset Y.

K distances are calculated in parallel by the K PEs. Hence,

the total number of time steps is MN steps or clock cycles.

The time complexity of the proposed architecture can also

be determined by calculating the time value assigned by the

scheduling function in (20) to the point with upper limits

coordinates:

t(pmax) =
[
0 1 M

]
⎡
⎣K − 1
M − 1
N − 1

⎤
⎦ = MN − 1 (25)

Since the first time value is zero, the total number of time steps

is t(pmax) + 1 = MN steps. The resulting processor array

and the structure of each PE are shown in Fig. 3 and Fig.

4, respectively. The remaining processor array architectures

are obtained in the following subsections using the same

procedure utilized in this subsection to obtain Design #1.

Fig. 4: Processing element for Design #1 in Fig. 3

B. Design #2: using s2 = [0 N 1] and P2 = [1 0 0]

The projection matrix is the same as that of Design #1.

Hence, all points in the computation domain will be mapped

to a linear processor array of K PEs similar to that in Fig. 3

with variable X being broadcast and variables Y and D are

localized. The chosen scheduling vector results in assigning

each point in the computation domain the time value:

t(p) =
[
0 N 1

]
⎡
⎣ k
m
n

⎤
⎦ = Nm+ n (26)

The total number of time steps is also MN steps. However, the

scheduling vector imposes a different order of execution. N
computations for feature m of all data samples are performed

before the N computations for feature m + 1. Hence, N
registers are required by each PE to store the intermediate

results compared to only one register in Design #1.

C. Design #3: using s3 =[1 0 K] and P3 =[0 1 0]

The scheduling function for this design alternative is:

t(p) =
[
1 0 K

]
⎡
⎣ k
m
n

⎤
⎦ = k +Kn (27)

Accordingly, the total number of time steps is KN steps.

Both input variables X and Y are localized, and output D is

broadcast with its broadcast direction mapped to a line along

the m-axis. The PE structure is shown in Fig. 5.

Fig. 5: Processing element for Design #3

Broadcasting an output variable requires that partial results

from all PEs are used concurrently to generate one data

element of the output matrix every clock cycle as shown in

Fig. 6.

D. Design #4: using s4 =[N 0 1] and P4 =[0 1 0]

The scheduling function for this design choice is:

t(p) =
[
N 0 1

]
⎡
⎣ k
m
n

⎤
⎦ = Nk + n (28)

The time complexity for this design is equivalent to that of

Design #3 which is KN time steps. The PE structure and the

processor array architecture are the same in Fig. 5 and Fig. 6,

respectively. The main difference between the two designs is

in the order of execution that results in generating elements

of the output matrix D in a different order.

����������	
������������
���	
�����
���������
������������������������������
����
�������
�
����	�����

618
Authorized licensed use limited to: Princess Sumaya University for Technology. Downloaded on May 07,2024 at 07:42:17 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Processor array architecture for Design #1

Fig. 6: Processor array architecture for Design #3

E. Design #5: using s5 = [M 1 0] and P5 =[0 0 1]

The scheduling function for this design option is:

t(p) =
[
M 1 0

]
⎡
⎣ k
m
n

⎤
⎦ = Mk +m (29)

The total number of time steps is KM steps. Both input

variable X and output variable D are localized. Input variable

Y is broadcast with its broadcast direction mapped to a line

along the n-axis. For every M cycles, each PE generates the

distance D(k, n) between the nth sample of dataset X and the

kth sample of dataset Y. N distances are calculated in parallel

by the N PEs. The processor array architecture is shown in

Fig. 7 with the PE structure being the same as that of Design

#1 in Fig. 4.

F. Design #6: using s6 = [1 K 0] and P6 = [0 0 1]

The scheduling function for this design alternative is:

t(p) =
[
1 K 0

]
⎡
⎣ k
m
n

⎤
⎦ = k +Km (30)

The processor array architecture and its time complexity are

the same as of Design #5. However, the order of execution

that is imposed by the chosen scheduling vector dictates that

K registers are required by each PE to store the intermediate

results compared to only one register in Design #5.

VII. DESIGN COMPARISON AND RESULTS

The systematic approach adopted in this work facilitates

design space exploration of linear processor arrays for the

similarity distance computation problem. The obtained ar-

chitectures provide us with the flexibility to choose the one

that meets hardware constraints for specific values of system

parameters K, M , and N .

A. Design Comparison

Design #1 and Design #2 are suitable for parallelizing

distance calculation tasks where N � K,M . Distance cal-

culation that is required for clustering data samples of a large

dataset X using K-Means algorithm, for example, fits these

design options since the size of dataset X is much larger than

the number of cluster centroids K and the number of features

M . Compared to Design #1, Design #2 is not practical since it

has the same time complexity as a design with a large number

of additional registers to store intermediate results.

In Design #1, elements of input matrix X are globally used

by all PEs. On the other hand, each PE in Design #3 and

Design #4 only consumes a single feature or dimension of

data samples. In an FPGA implementation of these design

alternatives, input dataset X can be distributed among fast

and small on-chip RAMs instead of storing it in a large

single, but slower off-chip RAM. The main drawback of these

two architectures is their slow clock rate compared to other

����������	
������������
���	
�����
���������
������������������������������
����
�������
�
����	�����

619
Authorized licensed use limited to: Princess Sumaya University for Technology. Downloaded on May 07,2024 at 07:42:17 UTC from IEEE Xplore. Restrictions apply.

Fig. 7: Processor array architecture for Design #5

architectures since M partial results have to be added within

a single clock cycle.

Design #5 is another option that is similar to Design #1.

The main differences between the two architectures are in the

choice of broadcasting or localizing input variables X and

Y, and the number of PEs. Design #5 is not amenable for

hardware implementation when the value of N is very large

since it results in a huge number of PEs. However, this design

option is suitable for processing high dimensional, low sample

size (HDLSS) datasets [14]. One example of these datasets

is the gene expression microarray datasets. These datasets

typically have a small number of samples N and a large

number of genes that represent the features [15]. The time

complexity for Design #6 is the same as of Design #5 with

an extra K ×N registers to store intermediate results.

In addition to the six obtained architectures, the systematic

methodology adopted in this work can be used to obtain a

previously devised architecture in [10]. This architecture is

similar to Design #1 with input X being pipelined rather than

broadcast. Scheduling vector s1 can be modified to reflect

this change by applying pipeline restriction in (11) instead of

broadcast restriction in (10). The modified scheduling vector

is:

s7 =
[
1 1 M

]
(31)

The total number of time steps is (K+MN−1) as compared

to (MN) steps for Design #1. The resulting processor array

architecture is shown in Fig. 8. A total of 1
2K(K − 1) delay

registers are used to feed features of input dataset Y. As shown

in Fig. 9, no delay registers are used to feed any of the inputs

as in Design #1. The structure of PE is the same as of Design

#1 shown in Fig. 4 with one more register for the pipelined

input X.

B. Implementation Results

Both Design #1 and Design of [10] are implemented on

FPGA to accelerate distance computation involved in clus-

tering pixels of 512 × 512 RGB color images. Each pixel is

represented using three 8-bit color components (red, green, and

blue). Both architectures are implemented in Verilog hardware

description language with Xilinx ISE Design Suite 13.4 tar-

geting Xilinx Virtex7 XC7VX330T. Table II and Fig. 10 show

implementation results for distance calculation involved in one

iteration of the K-Means clustering algorithm with N=262,144

pixels, M=3 features, and different number of clusters K.

Implementation results show that Design #1 outperforms

Design of [10] in terms of area and speed for all values of K.

Design of [10] occupies more slices due to the delay registers

used to feed features of input dataset Y. Execution time is

determined by the number of clock cycles required to calculate

all elements of distance matrix D and the clock rate. For all

values of K, Design of [10] has a slower clock speed and

requires (K−1) more clock cycles than Design #1. As shown

in Table II, as the number of PEs increases, the maximum

clock rate for Design #1 decreases due to the higher delay

of longer broadcast buses. However, Design #1 still attains

higher clock rate than Design of [10] due to higher clock

skew as inspected by the Xilinx tool. The effect of clock skew

and long broadcast buses can be minimized by using clock

distribution networks and buffer insertion for Design of [10]

and Design #1, respectively at the cost of more area and power

consumption.

Fig. 8: Inputs timing for Design of [10] with K=4

VIII. CONCLUSION

The systematic technique presented in this work is used

to explore the design space of linear processor arrays for the

computation of similarity distance matrices. Six new processor

arrays, in addition to a previously devised one, are obtained

systematically. Time and area complexities of these seven

architectures are compared and analyzed. Implementation re-

sults for the previously obtained architecture and one of our

����������	
������������
���	
�����
���������
������������������������������
����
�������
�
����	�����

620
Authorized licensed use limited to: Princess Sumaya University for Technology. Downloaded on May 07,2024 at 07:42:17 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Implementation results

#PEs

K

Design #1 Design of [10]

Area

(# Slices)

Max. Frequency

(MHz)

Execution Time

(ms)

Area

(# Slices)

Max. Frequency

(MHz)

Execution Time

(ms)

4 44 238.72 3.29 99 167.44 4.69

8 93 234.85 3.34 168 175.68 4.44

16 184 224.41 3.5 318 184.09 4.27

32 373 212.72 3.69 644 185.04 4.25

Fig. 9: Inputs timing for Design #1 with K=4

Fig. 10: Area-delay product of Design #1 and Design of [10]

for different values of K

proposed architectures show that the proposed architecture

achieves better performance in terms of speed and area.

Currently, we are investigating nonlinear scheduling and

projection operations that allow for more control on the work-

load assigned to the processing elements, and on the number

of processing elements to explore more design alternatives.

REFERENCES

[1] D. Singh and C. K. Reddy, “A survey on platforms for big data
analytics,” Journal of Big Data, vol. 2, no. 1, p. 1, 2014.

[2] R. Xu, D. Wunsch et al., “Survey of clustering algorithms,” Neural
Networks, IEEE Transactions on, vol. 16, no. 3, pp. 645–678, 2005.

[3] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a review,”
ACM computing surveys (CSUR), vol. 31, no. 3, pp. 264–323, 1999.

[4] T.-M. Huang, V. Kecman, and I. Kopriva, Kernel based algorithms for
mining huge data sets. Springer, 2006, vol. 1.

[5] S. B. Kotsiantis, I. Zaharakis, and P. Pintelas, “Supervised machine
learning: A review of classification techniques,” 2007.

[6] A. Choudhary, R. Narayanan, B. Ö. Ikyılmaz, G. Memik, J. Zambreno,
and J. Pisharath, “Optimizing data mining workloads using hardware
accelerators,” in Proc. of the Workshop on Computer Architecture
Evaluation using Commercial Workloads (CAECW), 2007.

[7] H. Cheng and C. Tong, “Clustering analyzer,” Circuits and Systems,
IEEE Transactions on, vol. 38, no. 1, pp. 124–128, 1991.

[8] M. Lai, M. Nakano, Y. Wu, and C. Hsieh, “VLSI design of clustering
analyser using systolic arrays,” in Computers and Digital Techniques,
IEE Proceedings-, vol. 142, no. 3. IET, 1995, pp. 185–192.

[9] A. Kanan, F. Gebali, and A. Ibrahim, “Design space exploration of 2-D
processor array architectures for similarity distance computation,” IEEE
Transactions on Parallel and Distributed Systems, vol. 28, no. 8, pp.
2218–2228, Aug 2017.

[10] M. F. Hsieh and C. H. Lai, “A serial input VLSI systolic architecture
for a clustering analyser,” International journal of electronics, vol. 84,
no. 3, pp. 269–284, 1998.

[11] D. G. Perera and K. F. Li, “Parallel computation of similarity mea-
sures using an FPGA-based processor array,” in Advanced Information
Networking and Applications, 2008. AINA 2008. 22nd International
Conference on. IEEE, 2008, pp. 955–962.

[12] F. Gebali [El-Guibaly] and A. Tawfik, “Mapping 3-d IIR digital filter
onto systolic arrays,” Multidimensional Systems and Signal Processing,
vol. 7, no. 1, pp. 7–26, 1996.

[13] F. Gebali, Algorithms and Parallel Computing. John Wiley & Sons,
2011.

[14] Y. Terada, “Clustering for high-dimension, low-sample size data using
distance vectors,” arXiv preprint arXiv:1312.3386, 2013.

[15] A. Hochstein, H. I. Ahn, Y. T. Leung, and M. Denesuk, “Survival
analysis for HDLSS data with time dependent variables: Lessons from
predictive maintenance at a mining service provider,” in Service Oper-
ations and Logistics, and Informatics (SOLI), 2013 IEEE International
Conference on, July 2013, pp. 372–381.

����������	
������������
���	
�����
���������
������������������������������
����
�������
�
����	�����

621
Authorized licensed use limited to: Princess Sumaya University for Technology. Downloaded on May 07,2024 at 07:42:17 UTC from IEEE Xplore. Restrictions apply.

