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     Abstract—     In this paper, a genetic algorithm is used to 

optimize of a Direct Current to Direct Current boost converter 

with inverted-gamma filter. The objective is to reduce the electro-

magnetic interference (EMI) produced from the non-linear 

elements by minimizing the control-to-output transfer function. 

The optimization was done using MATLAB/Global optimization 

toolbox for 3 different initial populations, each population was 

optimized using 5 different genetic algorithm operations, for a 

total of 16 options and 48 runs.  Experimental results show that 

the proposed approach achieved an average fitness function 

value of (-234.87), which is 5.41% better fitness function value 

compared to a previous related work. 

   Keywords—Boost Converters, EMI, Optimization, Genetic 

Algorithm.  

I. INTRODUCTION 

    Direct Current to Direct Current (DC-DC) converters play a 

significant role in nowadays technology. They can be nearly 

found in every DC operating device, such as electric vehicles, 

electric power generation (wind and photovoltaic), and mobile 

phones. DC-DC converters are particularly useful in changing 

the DC voltage from a level to another, through a circuit that 

consists of resistors, inductors, capacitors, diodes, and 

switching devices [1]. DC-DC converters also generate 

current and voltage related interference at the input and the 

output of the converters, resulting in noise injection to the 

power system, and a disturbed operation of communication 

and control systems [2].  

    

    To avoid such interferences, active and passive filters are 

used. Active filter design is complicated due to the complexity 

involved in its operation. Passive filters, on the other hand, 

have been traditionally used for the mitigation of harmonic 

distortion [2]. The work proposed in this study is for 

optimizing a DC-DC boost converter with a passive inverted-

gamma filter. The inverted-gamma filter is a type of LC filters 

that varies the input impedance of the converter, resulting in a 

difficult optimization of the EMI filter design. The optimized 

parameters in this study are the inverted-gamma filter inductor 

and capacitor, the boost converter inductor and capacitor, and 

the switching frequency using metaheuristic optimization. 

Metaheuristic algorithms are high-level algorithms designed 

to find optimal or near-optimal solutions for an optimization 

problem, especially when we do not have enough knowledge 

about the optimization problem itself [3].  

 

      Several approaches have been proposed in the literature to 

optimize different parameters of DC-DC converters such as 

electromagnetic interference (EMI) [4], inductor value [5], 

efficiency [2], reliability [6], and controller tuning [7]. 

Different types of metaheuristics algorithms such as genetic 

algorithm, cuckoo algorithm, and earthquake algorithm have 

been used to find optimal values for the selected parameters. 

Reference [4] used the genetic algorithm because it is less 

dependent on the initial population. Reference [5] used the 

earthquake algorithm due to its ability to provide both wide 

and fine searching paths depending on the given velocities. 

The authors of [2] and [6] used the genetic algorithm due its 

capability of crossing local minima. Reference [7] used the 

cuckoo algorithm due to its fast convergence rate and global 

search abilities.  The genetic algorithm is used in this paper 

due to its effectiveness in large search space, continuous 

variables, and parameter tuning optimization problems. 

     

      In this paper, a genetic algorithm is proposed to enhance 

the performance of DC-DC boost converters with inverted-

gamma filters by minimizing the EMI generated by non-linear 

elements.  A Genetic algorithm is a search-based optimization 

technique that simulates the process of natural selection, 

which applies the principle of survival of the fittest. It mimics 

the evolution process on the problem to be optimized by 

evolving a set of populations iteratively to reach a better 

solution [8].  

     

      The remaining of this paper is organized as follows. The 

optimization problem is formulated in Section II. Section III 

presents the proposed methodology. Experimental results are 

presented and discussed in Section IV. Section V presents the 

evaluation and a mathematical proof of the results. Finally, 

Section VI concludes the paper.   

 

II. PROBLEM FORMULATION 

 

A. System Modeling 

 

     DC-DC boost converters consist of linear and nonlinear 

elements. The nonlinear elements will complicate the 

calculation of the DC operating point. Hence, the small signal 

analysis approach is used to approximate the behaviour of a 

nonlinear power electronics system, with a linear time-

invariant (LTI) model that is valid around an operating point 

of interest. Small-signal analysis is an enabling step to apply 

classic control theory to power electronics systems, which 

requires an LTI representation such as a transfer function or a 

state-space model of the system. Linearizing techniques are 

proposed in reference [9]. Figure 1 shows the circuit diagram 

of the boost converter with inverted gamma filter. Figure 2 

shows the boost converter after linearization. 

 

     The small signal model is used to derive the control-to-

output transfer function (Gvd), which will be used to 
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determine the converter behaviour at a specific frequency. 

Equation (1) represents the control to output transfer function 

of the boost converter with inverted gamma filter [4]. 

 

 
Fig. 1  Boost Converter with Inverted Gamma Filter Circuit Diagram [4]. 

 
Fig. 2  The Converter after Linearization [4]. 

Where: 

𝐿𝑐  : 𝐵𝑜𝑜𝑠𝑡 𝑖𝑛𝑑𝑢𝑐𝑡𝑜𝑟 

𝐿𝑓 : 𝐹𝑖𝑙𝑡𝑒𝑟 𝑖𝑛𝑑𝑢𝑐𝑡𝑜𝑟 

𝐶𝑐: 𝐵𝑜𝑜𝑠𝑡 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑜𝑟 
𝐶𝑓: 𝐹𝑖𝑙𝑡𝑒𝑟 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑜𝑟 

𝐷 ∶ 𝐷𝑢𝑡𝑦 𝐶𝑦𝑐𝑙𝑒 
𝐷′: 1: 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 𝑡𝑢𝑟𝑛𝑠 𝑟𝑎𝑡𝑖𝑜𝑛 
𝑉: 𝑇ℎ𝑒 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 
𝐼: 𝑇ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 
 

 

 

𝐺𝑣𝑑(𝑠) =
𝑉𝑜

𝑑𝑝

𝑠𝑤1+𝑤2

𝑠2𝑢1+𝑠𝑢2+𝑢3

𝑠4𝑥1+𝑠3𝑥2+𝑠2𝑥3+𝑠𝑥4+𝑥5

𝑠3𝑦1+𝑠2𝑦2+𝑠𝑦3+𝑦4
     (1) 

 
Where: 
 
𝑤1 =  −𝐿𝑐;  𝑤2 = 𝑑𝑝𝑅; 𝑢1 = 𝐿𝑐𝐶𝑐𝑅; 𝑢2 = 𝐿𝑐;  𝑢3 = 𝑑𝑝

2𝑅; 

𝑥1 =  𝐿𝑓𝐶𝑓𝐿𝑐
2𝑑𝑝𝑅𝐶𝑐  

𝑥2 = [𝐿𝑓 + 𝐿𝑐𝑑𝑝𝑅 − 𝑑𝑝
2𝑅𝐿𝑓𝐶𝑓]𝐿𝑐𝐶𝑐 + 𝐿𝑐

2𝐿𝑓𝐶𝑓𝑑𝑝𝑅 

𝑥3 = [𝐿𝑓 + 𝐿𝑐𝑑𝑝𝑅 − 𝑑𝑝
2𝑅𝐿𝑓𝐶𝑓]𝐿𝑐 + 𝐿𝑓𝐶𝑓𝐿𝑐𝑑𝑝

3𝑅2 

𝑥4 = [𝐿𝑓 + 𝐿𝑐𝑑𝑝𝑅 − 𝑑𝑝
2𝑅𝐿𝑓𝐶𝑓]𝑑𝑝

2𝑅 − 𝑑𝑝
2𝑅𝐿𝑐  

𝑥5 =  −𝑑𝑝
4𝑅2 ; 𝑦1 =  𝐿𝑐𝐶𝑐𝐿𝑓𝐶𝑓;  𝑦2 =  𝐿𝑐𝐶𝑐 + 𝐿𝑐𝐿𝑓𝐶𝑓; 

𝑦3 =  𝐿𝑐 + 𝐿𝑓 + 𝐿𝑓𝐶𝑓𝑑𝑝
2𝑅 ;  𝑦4 =  𝑑𝑝

2𝑅 

𝑉𝑜: 𝑂𝑢𝑡𝑝𝑢𝑡 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 
𝐿𝑐(𝑋[1]) = 𝐵𝑜𝑜𝑠𝑡 𝑖𝑛𝑑𝑢𝑐𝑡𝑜𝑟 
𝐿𝑓(𝑋[2]) = 𝐹𝑖𝑙𝑡𝑒𝑟 𝑖𝑛𝑑𝑢𝑐𝑡𝑜𝑟 

𝐶𝑐(𝑋[3]) = 𝐵𝑜𝑜𝑠𝑡 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑜𝑟 
𝐶𝑓(𝑋[4]) = 𝐹𝑖𝑙𝑡𝑒𝑟 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑜𝑟 

𝑑𝑝 = 1 − 𝑡ℎ𝑒 𝑑𝑢𝑡𝑦 𝑐𝑦𝑐𝑙𝑒 

𝑅 = 𝐿𝑜𝑎𝑑 𝑟𝑒𝑠𝑖𝑠𝑡𝑜𝑟 
 

      

B. Encoding 

 

     The encoding method used in this work is value encoding, 

where a chromosome represents a solution to the optimization 

problem, each gene represents an optimization variable, and 

the allele will be the value of the variable. The chromosome 

consists of five genes that represent the five optimization 

variables:𝐿𝑐, 𝐿𝑓, 𝐶𝑐, 𝐶𝑓, and 𝑓. Figure 3 shows the 

chromosome and the genes of this problem. 

 
Figure 3. Chromosome and Genes of the Problem 

C. Fitness Function & Constraints 

 

     The fitness function,𝑓(𝑥),is shown in Equation (2). 

Equations (4) -(6) show the constraints used to ensure proper 

working of the converter. 

𝑓(𝑥) = −20 log|𝐺𝑣𝑑(𝑗𝜔)| (2) 

𝐿𝑐 −
𝐷. 𝑇. 𝑉𝑖𝑛

2. ∆𝑖
= 0 

(3) 

𝐶𝑐 −
𝐷. 𝑇. 𝑉𝑜

2. ∆𝑣. 𝑅
= 0 

(4) 

10−9 ≤ 𝑋[1,2,3,4] ≤ 10−2 (5) 

103 ≤ 𝑓 ≤ 15𝑥104 (6) 

Where X[1,2,3,4] are the values of inductors and capacitors. 

 

III. METHODOLOGY  

 

     The optimization process was done using 

MATLAB/Global Optimization Toolbox. Different random 

seeds were used to start at random initial populations. The 

same seed has been used to ensure fair comparison between 

different options using the same initial population instance. 

Changing the seed allows monitoring the behaviour of the 

same options over different initial population instances. The 

selected options from selection function are roulette selection, 

tournament selection, and remainder selection. The selected 

options from crossover function are scattered crossover, 

heuristic crossover, single point crossover, and double point 

crossover. The selected options from mutation function are 

Gaussian mutation, uniform mutation, and power mutation 

[10]. The selected numbers for elite members are one, three, 

and five. The selected numbers for population size are five, 

ten, and twenty for three different seeds. 

 

    The GA will start by creating random initial population, 

then the individuals will be selected depending on the fitness 

value and a randomized selection process depending on a 

probability, these selected individuals will create a new 

population. Some individuals in the new population will 

change due to crossover and mutation, which will produce 

new individuals, these operations continue until a stopping 

criterion is met. Figure 4 shows the flow chart of the genetic 

algorithm. 

 
Figure 4. Flow chart of the genetic algorithm. 
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IV. RESULTS  

 

     In this section, the options of the proposed genetic 

algorithm are fine-tuned to help reach optimal values of the 

optimization variables. Subsections A, B, C, D, and E 

represent the selection, crossover, mutation, number of elite 

members, and the number of individuals respectively for three 

different seeds. Seed 1 starting parameters are  𝐿𝐶 = 1𝑥10−9𝐻,
𝐿𝑓 = 1𝑥10−9𝐻 , 𝐶𝑐 = 1𝑥10−9𝐹  , 𝐶𝑓 = 1𝑥10−9𝐹  & 𝑓 = 1𝑥103𝐻𝑧. 

Seed 2 starting parameters are 𝐿𝐶 = 5.39𝑥10−7𝐻, 𝐿𝑓  =

 9.8514𝑥10−4 𝐻 ,  𝐶𝑐  =   0.0057 𝐹 , 𝐶𝑓  = 8.004𝑥10−4  𝐹  &  𝑓 =

29381  Hz. Seed 3 starting parameters are 𝐿𝐶 = 5.3208 𝑥 10−6 𝐻,
𝐿𝑓  = 7.2352 𝑥 10−4 𝐻,  𝐶𝑐  =  4.6078 𝑥 10−5 𝐹,  𝐶𝑓 = 0.0099   𝐹, 
𝑓 = 11346 𝐻𝑧 . 

 

A. Selection Operation 

 

 Selection operation is the operation of choosing the parents 

of the next generation; it has different options such as roulette, 

tournament, and remainder selection. Roulette selection 

chooses parents by simulating a roulette wheel; the area of 

each section is proportional to the individual fitness value. 

Tournament selection initiates random parents then chooses 

the parents with best fitness value. Remainder selection 

assigns parents deterministically from the integer part of each 

individual's scaled value and then uses roulette selection on 

the remaining fractional part. Figures (5)-(7) show the 

behaviour of the different selection options in the three 

different seeds.  

 

 
Figure 5. Selection options behaviour in seed 1 

 
Figure 6. Selection options behaviour in seed 2. 

 
Figure 7. Selection options behaviour in seed 3. 

The average fitness function values are (249.6), (250.1) and 

(245.3) for roulette, tournament and remainder selection 

respectively, these values are very close as average since all of 

selection options depends on a random or partially random 

selection. In each instance, each option behaves differently, 

which means that it cannot be said that an option is the best for 

each problem instance. 

 

B. Crossover Operation 

 

     Crossover operation is the operation of combining the 

genetic information between two chromosomes, which yields 

in new chromosomes. It has different options such as 

scattered, heuristic, single point, and double point crossover. 

Scattered crossover creates random binary chromosomes and 

selects the genes where the chromosome is 1 from the first 

parent, and the genes where the chromosome is 0 from the 

second parent. Heuristic crossover increases the part taken 

from the parent with higher fitness value. Single and double 

points randomly create a new chromosome by crossing-over 

the parents in on or two points.  Figures (8)-(10) show the 

behaviour of the different crossover options in the three 

different seeds. 

 

 
Figure 8. Crossover options behaviour in seed 1 

The average fitness function values are (253.3), (220.6), 

(247.2), and (261) for scattered, heuristic, single point, and 

double point crossover respectively. Double point crossover 

shows the best fitness function values because it offers more 

exploration for the search space of the problem. 
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Figure 9. Crossover options behaviour in seed 2 

 
Figure 10. Crossover options behaviour in seed 3. 

C. Mutation Operation 

 

      Mutation Operation is the process where a gene in a 

chromosome is changed to give a new solution. It has different 

options such as Gaussian, uniform, and power mutation. 

Gaussian mutation adds a random number taken from 

Gaussian distribution with mean 0 to each gene. Uniform 

mutation replaces a selected gene with values from selected 

range uniformly. Power mutation uses a specific equation to 

mutate. 

Figures (11)-(13) show the behaviour of the different mutation 

options in the three different seeds. 

 

 
Figure 11. Mutation options behaviour in seed 1 

 
Figure 12. Mutation options behaviour in seed 2 

 
Figure 13. Mutation options behaviour in seed 3. 

The average fitness function values are (259.7), (210.6), and 

(259.3) for Gaussian, uniform and power mutation 

respectively. Both Gaussian and power mutation resulted in 

good fitness function values. Gaussian mutation produces 

small, normally distributed changes, while power mutation 

introduces larger, uniform changes, as seen in figures (11)-

(13), Gaussian mutation gradually improves the fitness value, 

and power mutation converged fast. 

 
D. Number of Elite Individuals 

 

      Elites are the individuals in the current generation with the 

best fitness values. These individuals automatically survive to 

the next generation. Figures (14)-(16) show the behaviour of 

the different elite member’s number in the three different 

seeds. 

 
Figure 14. Changing the number of elites’ behaviour in seed 1 
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Figure 15. Changing the number of elites’ behaviour in seed 2 

 
Figure 16. Changing the number of elites’ behaviour in seed 3. 

The average fitness function values are (253.3), (226.3), and 

(253.3) for 1, 3, and 5 elite individuals respectively. The more 

elite members means more exploitation. It cannot be said that 

a specific number of elite members is the best, because it 

depends on the initial population of the optimization problem. 

 
E. Number of Individuals 

 

     The number of the individuals affect the population size, 

increasing the number of individuals expresses more 

exploration in the search space. Figures (17)-(19) show the 

behaviour of the different member’s number in the three 

different seeds. 

 

 
Figure 17. Changing the number of individual’s behaviour in seed 1 

 
Figure 18. Changing the number of individual’s behaviour in seed 2 

 
Figure 19. Changing the number of individual’s behaviour in seed 3. 

The average fitness function values are (244.67), (237), and 

(251.2) for 5, 10, and 20 individuals. For more number of 

individuals, the exploration will increase. 

 

V. COMPARISON,  EVALUATION & MATHEMATICAL PROOF 

 

 

A. Comparison & Evaluation 

 

  The results from the past works are compared with the 

average values obtained from all simulations of the three 

seeds. The average value of the fitness functions is -234.87, 

and the average number of generations to converge is 3.63 vs 

-216.683 and 2 for the past work respectively. The evaluation 

formula is shown in equation (7). 

 
𝑟𝑒𝑓 [4] 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 − 𝑡ℎ𝑖𝑠 𝑝𝑎𝑝𝑒𝑟 𝑟𝑒𝑠𝑢𝑙𝑡𝑠

𝑟𝑒𝑓 [4] 𝑟𝑒𝑠𝑢𝑙𝑡𝑠
∙ 100% 

(7) 

 

Resulting in 5.41% better fitness value and 81.5% slower 

divergence for this paper results. 

 
B. Mathematical Proof 

 

      Table (1) Shows the final values of the optimization 

variables and the value of the fitness function. The initial 

values chosen were 𝐷 = 0.76, 𝑉𝑖𝑛 = 120V,  𝑉𝑜𝑢𝑡 =
500V, 𝛥𝑖 = 12, 𝛥𝑣 = 14, 𝑅 = 6Ω. 
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Parameter Cf Cc Lf Lc f 

Value 3.08x10-8 

F 

5.44x10-5 

F 

0.01 
H 

9.1x10-5 

H 

41813 
Hz 

Table 1. Final values of the Algorithm. 

 

Applying these values to equations (4)&(5): 

 

𝐿𝑐 =
0.76𝑥120

2𝑥41813𝑥12
= 9.1𝑥10−5 𝐻  

 

𝐶𝑐 =
0.76𝑥500

2𝑥41813𝑥6𝑥14
= 5.41𝑥10−5 𝐹   

 

Which are the same results in the output of the algorithm.  

 

VI. CONCLUSION 

 

This paper work resulted in better average fitness values (-

234.87) vs (-216.683) and slower average convergence (3.63) 

vs (2), which is 81.5% slower compared with past works. The 

best instance was using the Gaussian mutation in seed 1, which 

resulted in (-280) fitness value and converged in 5 generations.  

 

The genetic algorithm outcomes are very sensitive to the 

initial population, exploration and exploitation rates used in 

each run, it was shown that the same options for different 

initial populations resulted in an unexpected behaviour 

compared to the other options. This concludes that it cannot 

be said that a genetic operation or option is superior to other 

genetic operation for all instances, it is only true for a set of 

instances. 
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