
OSINT-Based Tool for Social Media User
Impersonation Detection Through Machine Learning

1st Rajaa Alqudah
King Abdullah II School of Engineering

Princess Sumaya University for Technology
Amman, Jordan

r.alqudah@psut.edu.jo

2nd Mohammed Al-Qaisi
King Abdullah II School of Engineering

Princess Sumaya University for Technology
Amman, Jordan

mohammed.w.alqaisi@gmail.com

3rd Rakan Ammari
King Abdullah II School of Engineering

Princess Sumaya University for Technology
Amman, Jordan

rak20170685@std.psut.edu.jo

4th Yazan Abu Ta’a
King Abdullah II School of Engineering

Princess Sumaya University for Technology
Amman, Jordan

yaz20170254@std.psut.edu.jo

Abstract—With the explosion of social media platform usage
in recent years, privacy and online security have become major
concerns. Malicious users create fake social media profiles, posing
as regular people or public figures to gather personal information,
damage reputations, or show off their social engineering skills.
As a result, social media platforms, such as Facebook, Instagram,
and others, provide the perfect place for identity theft. Malicious
users can create fake social media profiles with the same name
and profile image as another person.

In this paper, Open Source Intelligence (OSINT) platform is
used to collect and analyze publicly available information to
identify potential impersonators. The proposed approach employs
web scraping, machine learning, and web development modules
in Python and can be hosted on the AWS cloud for optimal
performance and scalability. It accurately scrapes social media
platforms (Facebook and Instagram) and presents potential
impostor profiles based on a user’s uploaded photo only, or the
photo with a name, or the photo with the name and a username.
The proposed model achieved an accuracy of 88% with precision
and recall matrices of 86% and 89% respectively.

Index Terms—Social Media, OSINT, Privacy, Machine learn-
ing, Face recognition

I. INTRODUCTION

In today’s era, social media has become a crucial part
of people’s lives. People rely on social media platforms for
all sorts of communication for either business or personal
purposes. Whether a social media profile belongs to the person
presented in it can never be known. This problem is caused
due to social media impersonators who mimic legitimate
profiles and can have a severe impact on the reputation of the
individual they are targeting. Unaware organizations can also
be greatly affected by impersonators. Users can go ahead and
create an identical social media page to harm the reputation
of the targeted organization.

Open Source Intelligence (OSINT) [1] is a technique for
collecting and analyzing information from publicly available
sources. Many techniques are utilized in OSINT including
search engines, public records, news sources, and data anal-

ysis. This framework lacks a tool that specifically targets
social media impersonators, and social media platforms lack
detection algorithms against such frauds.

Artificial Neural Networks (ANNs) are machine learning
schemes that are inspired by biological nervous systems. These
networks are built from many interconnected nodes known as
neurons. A basic ANN consists of three basic layers: the input,
hidden, and output layers. The way the layers work together is
by first loading the input as a multidimensional vector from the
input layer and then distributing it to the hidden layers. These
hidden layers are responsible for assessing how a stochastic
change inside itself affects or improves the final output, based
on the decisions made by the prior layer. Then the ANN
continues to train by repeating this process for every hidden
layer until a well-trained model is achieved. An ANN training
process where many hidden layers are involved is known as
a deep learning process [2]. Convolutional Neural Networks
(CNNs) are similar to ANNs, as they have the same basic
structure, but were built for a different purpose. They were
introduced from the study of the brain’s visual cortex to be
used in image recognition applications.

This paper proposed a framework to overcome the concerns
that people and organizations may have about the misuse of
their images or their brand identity images. The framework
incorporates OSINT, machine learning, and web scraping
automation and uses the Python programming language to
achieve the goals. The purpose of the framework is to allow
people to check if there are social media accounts that are
impersonating them, or in other words, using their image
and/or name. This is achieved by taking an image and name as
inputs from the user and then using web scraping to collect all
social media accounts that have matching names. Then, using
a machine learning algorithm, check if any of those found
profiles have a profile picture that contains a matching face to
the user’s face.

The framework includes two main parts: web scrapers

979-8-3503-2006-0/23/$31.00 ©2023 IEEE

2023 International Conference on Information Technology (ICIT)

752

20
23

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 In

fo
rm

at
io

n
Te

ch
no

lo
gy

 (I
CI

T)
 |

 9
79

-8
-3

50
3-

20
06

-0
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

IT
58

05
6.

20
23

.1
02

26
01

0

Authorized licensed use limited to: Princess Sumaya University for Technology. Downloaded on May 16,2024 at 10:53:43 UTC from IEEE Xplore. Restrictions apply.

to gather the information needed to get an accurate result
and machine learning modules which are used for image
search and to enhance the speed of the system. The tool was
developed that was hosted on the cloud using a Windows
server and has the specifics of 4 processors, 4 GB RAM, and
30 GB file system storage.

The tool will be triggered when a user selects a name
and picture as input to the web page, this mechanism is
called reverse image search and the only limitation is if the
model has not trained on the input picture, it will display to
the user to wait for the web scraper. After the web scraper
finishes gathering the information, the user needs to verify
their account and by that, it is decided that the other accounts
are the impersonators of the user. Fig. 1 below is a high view
of the system.

Fig. 1: System Overview

The rest of the paper is organized as follows: Section II
presents the related literature and background. The proposed
design is discussed in section III while the results are presented
and analyzed in section IV. Finally, section V concludes the
paper with a summary of the findings and future work.

II. LITERATURE REVIEW

OSINT concept is not new, it has been introduced years ago
to collect information from publicly available sources [1], [3].
With the emergence of social media, big data, and machine
learning in recent years, many studies discussed the OSINT
framework in the new era [4]–[9]. The authors of [8] described
the state of OSINT with a focus on the cyber security angle.
On the other hand, the authors of [9] list OSINT’s issues and
the impact of OSINT trends throughout the years. Examples
of these issues are great quantities of accessible information
on the web, information contradiction, and the manipulative
character of publicly available information to mention some.

EagleEye [10] is an open-source Python-based tool that
needs at least one image of a person and their name. The tool
then uses the name to find potential Facebook and Instagram
profiles. Then, using face recognition, the tool tries to find the
actual Facebook and Instagram profiles of the person you are
looking for.

PimEyes [11] is a proprietary web-based application that
takes an image only as input and uses reverse image search
and web scraping techniques. PimEyes does not search social
media platforms and requires a subscription to show the
results.

Social Mapper [12] on the other hand takes images and
usernames as input and searches social media websites only.
The output will be in CSV file format that lists all the
matched social media profiles. Social Mapper is considered
slow compared with the other tools.

To be able to distinguish this work from others’, table I
compares the proposed approach with other tools like Eagle-
Eye, PimEyes, and Social Mapper.

Biometric data, unlike passwords, PINs, cards, and keys,
cannot be forgotten, stolen, or lost. Many studies focus on
face recognition techniques and more specifically in answering
one question, given an image of a face, how can its identity
be determined? [13], [14]. Face recognition is an evolving
field, in which there are still challenges to be overcome. In
recent years, the field has received a great deal of attention
and development. Face recognition is done using the FAREC
Methodology which consists of four main stages: face detec-
tion, face alignment, face cropping, and feature extraction [15].

Web scrapers are tools that simulate human behavior in
accessing web pages either using low-level HTTP or by
launching and simulating the usage of a web browser, such
as Google Chrome [16], [17]. In terms of legality, the authors
of [18] give different cases that have occurred in the past like
eBay’s lawsuit against Bidder’s Edge for their use of bots.

In today’s era, cloud computing has been essential for the
IT industries all over the world. It consists of hardware,
software, and internet infrastructure which makes the most
powerful architecture of computation. In [19], the authors refer
to the term cloud in cloud computing as the collection of
networks and services where the user can benefit from cloud
computing power whenever demanded. Then it specifies the
three services provided by the cloud computing providers as
follows: Software as a Service (SaaS), Platform as a Service,
and Infrastructure as a Service.

III. PROPOSED DESIGN

The proposed approach is to open a social media platform’s
website and perform a name search. After successfully obtain-
ing a list of profiles, a Python package called Urllib [20] was
used to scrape this list. Urllib contains multiple modules used
for working with URLs, such as opening, reading, parsing
URLs, and exception handling. Urllib is used to download
images into a folder that will be used later for the machine
learning part and face matching.

2023 International Conference on Information Technology (ICIT)

753
Authorized licensed use limited to: Princess Sumaya University for Technology. Downloaded on May 16,2024 at 10:53:43 UTC from IEEE Xplore. Restrictions apply.

Tools Highlights Limits

EagleEye [10]
Takes images and usernames as input.
Uses the face-recognition Python module.
Outputs the links of user’s social media accounts.

Searches only Facebook and Instagram.
Performs public Facebook search, which yields extremely
inaccurate results.
Has no form of caching or model training for performed searches.

PimEyes [11]

Takes an image only as input.
Proprietary web-based application.
Uses reverse image search and web scraping techniques.
Accurate and ends up listing most websites where
the face in the input image is recognized.

Does not search social media platforms.
Requires a subscription to show results.

Social Mapper [12]
Takes images and usernames as input.
Searches social media websites only.
Outputs a CSV file listing all the matched social media profiles.

Built-in web scraper techniques are detected by
social media platforms.
Slow.

Proposed Tool

Takes an image, and optionally a name and a username as input
Use face-recognition Python module and a trained ML model.
Outputs links of impersonating accounts of the individual
recognized in the input image.

May produce false positives due to the lack of public images.
Limited to only social media platforms.

TABLE I: Comparing the proposed approach with other available tools

For machine learning, Keras model was used to process,
train and identify the images extracted from the social network.
The model has been trained on all the images inside the
directory dataset and exported the features needed to compare
it with the user image. The same feature extraction process is
applied to the user image, and the model will predict which
one of the images is like the input. The model produces a
confidence score of the predicted result.

Flask was used as the web framework due to its fast and
straightforward implementation. Flask handles HTTP requests
and responses as Python code. Flask is used to handle all
the web server’s routes and to redirect the users as the code
executes.

Machine learning algorithm and web scraping code were
imported to the Flask project and then deployed on AWS
using the Elastic Beanstalk service as an EC2 instance. Elastic
Beanstalk is a service that is used to deploy web applications
and automate the deployment process by setting up the EC2
instance automatically and installing the virtual environment.
CI/CD was integrated to make the workflow more efficient
and faster and to connect the project’s repository to the AWS
CodePipeline service so that each commit applied to the
repository is automatically updated on the web server.

The flow starts by retrieving the user input image to test
it in the machine learning model, then as optional, prompts
the user to enter their full name and/or username. Depending
on the machine learning model’s output, if there is a match,
the output will be the name of the user on which the model
has previously trained on; this output name is then sent to the
web scraper to find all the profiles that match that name and
image. On the other hand, if no match was found, the tool will
ask the user to input their name and/or username to generate
better results. After the web scraper is done retrieving all the
profiles, a one-to-one image comparison is performed on all
the profile pictures to eliminate the least relevant profiles, thus
improving the speed and accuracy of the final result overall.
The final verification step is just to help the tool make it clear
to the user that the output profiles are indeed impersonators.
Fig. 2 summarizes the phases of the flow.

A. Phase One: User inputs phase

This phase describes the inputs required for the tool to start
the image search. An Image and an individual name have to
be given, and the username is optional. The tool starts by
checking the input image with the trained model that has
already been trained. If the image was found by the model
the tool will retrieve the name and insert it as an input to the
web scraper, if the model couldn’t recognize the person, then
the user is asked to enter a name for the second phase.

B. Phase Two: Images Retrieving phase

With the help of web scraping techniques, a list of possible
social media accounts images will be generated and stored in
two folders; a Profile Picture folder which stores all the users’
profile pictures, and an images folder to store all the images
that will be used to train the model.

C. Phase Three: Image comparison phase

An image comparison on the profile pictures folder against
the input image is held using a face recognition library in
Python. The comparison is conducted by converting the images
into a set of values and if the subtracted value is lower than a
fixed threshold, then these images are considered a matching
picture of the input’s image. The last step in this phase is to
match all pictures that have passed the threshold test with their
accounts and store this information in a list. This phase was
developed to lower the false-positive results that are coming
from the web scrapers. A picture with no human face on it
will be removed.

D. Phase Four: User’s verification phase

Until the third phase, the tool would not know which
accounts on the list are impersonating the user. Hence, a user’s
verification stage came in handy to ask the user which one of
the presented accounts is yours. The user will be able to verify
their accounts among the list and all other accounts are listed
as impersonators for that user. Lastly, the tool will store this
state, the profiles pictures folder, and the images folder in a
file system and show it as a result.

2023 International Conference on Information Technology (ICIT)

754
Authorized licensed use limited to: Princess Sumaya University for Technology. Downloaded on May 16,2024 at 10:53:43 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Flow diagram of the system with phases

E. Phase Five: Output generation phase

Before outputting the result to the user, the images folder
generated through the web scraping phase must be trained
using the model. So, if any similar image is used as an input
the result should be presented immediately. In the end, the tool
should be able to present the verified social media account and
its account impersonators.

F. Phase Six: Machine Learning Training

Every time the users use the tool and after presenting
the impersonators to them, all the public photos from the
web scraping search will be downloaded into a folder and
a scheduled training process will be conducted at a predefined
cadence to retrain on the new pictures.

Multi-task Cascaded Convolutional Networks (MTCNN) is
a neural network that detects faces and facial landmarks in
images. It is one of the most popular and most accurate
face detection tools today [21]. It consists of 3 neural net-
works connected in a cascade and performs three tasks: Face

classification, Bounding Box Regression, and Facial Land-
mark localization. Face classification is a binary classification
problem to decide whether there is a face in the picture or
not. The Bounding Box Regression helps calculates the offset
between the picture and the nearest ground truth. The Facial
Landmark localization is formulated as a regression problem
and it searches for the five facial Landmarks: left eye, right
eye, nose, left and right mouth corners. Facenet keras is a
one-shot learning model. It fetches 128 vector embedding as
a feature extractor. It consists of good accuracy even for such
situations.

SVM (Support Vector Machine) creates an optimal hyper-
plane to classify the classes of training datasets based on
the different features of the face. The dimensionality of the
hyperplane is one less than the number of features. Different
kernels can be applied to see what features are used by the
classifier to remove the features if required. This can help
to improve speed. On the other hand, the Face recognition
algorithm consists of three stages: Face detection, Feature
extraction, and Feature classification. Face detection is used
to find the faces present in the image, extract the faces,
and display them. Feature extraction extracts the biological
components of your face. These biological components are
the features of your face that differ from person to person.
Feature classification is a geometry-based or template-based
algorithm used to classify the features of the test data among
different classes of facial features in the training data. The
algorithm detects the face inside the image using MTCNN,
then it uses Facenet keras to extract the features from the
image, and finally, it uses the SVM classification model to
train the data among the different classes.

IV. RESULTS AND ANALYSIS

This section will discuss the results generated after running
different test cases.

A. Prototype setup

Two web scrapers were used, Facebook Scraper and Insta-
gram Scraper. These two scarpers were chosen based on their
popularity and image-sharing capabilities [22].

Facebook Scraper relies on two functions, getFBProfilePic-
tures(), which searches for a name on Facebook and downloads
the profile pictures of all the results, and getFBPictures(),
which goes through all public profiles resulting by the first
function and downloads their publicly uploaded images, which
are then stored in the folder that will be sent for the ML model
for training.

For Face Recognition, a Python library based on Dlib was
used. Starting with the function matchFBProfile(), it takes all
the profile pictures downloaded, and the user input image
and creates an encoding for each one, after that, it calculates
a metric called face distance, so if this metric is below a
predefined threshold, the system considers these two pictures
as a match but if the metric is over the threshold there will be
no match. The other function is splitImageIntoFaces() which
is used to overcome the limitation of the ML model where it

2023 International Conference on Information Technology (ICIT)

755
Authorized licensed use limited to: Princess Sumaya University for Technology. Downloaded on May 16,2024 at 10:53:43 UTC from IEEE Xplore. Restrictions apply.

can only train on one person per picture, so each downloaded
picture goes through this function and if there’s more than one
face in the picture, it detects them, and each face is placed in
its own image, and stored in a folder which is ready to be sent
to the ML training server.

B. Experiment result and discussion

1) Case one: Input Image only: If the person has been
trained on previously, the ML model will output the person’s
name. This name can then be used as input to the web scraper
to scrape the social media platforms.

After the scraping is complete, one-to-one matching be-
tween the input image and the profile pictures of the scraped
accounts will take place to finally output all profiles with a
matching image. This output is shown to the user and the user
is asked to verify which of them is actually the user. The other
profiles can be considered impersonators.

In case the model is not trained on the person, the tool will
not be able to retrieve the name of the person and therefore
not be able to scrape the platforms for profiles. In this case,
the user is asked to enter a name if available. In addition, with
more users using the tool, the dataset will grow large enough
to be able to retrieve a name for the input image most of the
time.

As an example, suppose the user wants to search for the
image shown in Fig. 3. First, the user needs to upload the
image to the tool and pick the platform to search on i.e.
Facebook or Instagram. After that, the tool gives the user the
output as shown below in Fig. 4, which includes the profiles
that were found during the ML and scraping process. The user
is asked to choose which of the profiles is theirs and the rest
are considered impersonators. The outputs of the ML model
along with the output of the web scraping are shown in Fig. 5
to the user so that the user can verify which of the profiles is
theirs. In case the ML model was not trained on that person
in the input image, the scraping cannot take place and so no
further actions can take place. The user is asked to enter a
name at least as shown in Fig. 6.

Fig. 3: User input image

2) Case two: Input Image & Name : In the second case,
the user inputs the image as well as the name. In this case,
the name retrieval step from ML can be skipped. The profile
that the ML model has trained on (assuming the model has
trained on the person previously) along with the web scraper

Fig. 4: User verification phase

Fig. 5: The output after the user has selected their profile

output will be shown to the user and the user is then asked
to verify which of the profiles is theirs. Now in case the
profile that was output from the ML model has a different
name from the user input name, the user verification step can
be skipped and that account with a different name can be
considered the impersonator. In case it was the same name,
the user verification step will be required.

3) Case three: Input Image & Name & Username : In the
third scenario, the user has to input all three parameters: image,
name, and username. Here there is the advantage of comparing
the usernames as well and skipping the user verification in case
there is a match between the web scraping output username

Fig. 6: Model is not trained on the person

2023 International Conference on Information Technology (ICIT)

756
Authorized licensed use limited to: Princess Sumaya University for Technology. Downloaded on May 16,2024 at 10:53:43 UTC from IEEE Xplore. Restrictions apply.

and the input username by the user. In case there is no match,
the user verification step is required. All the profiles with non-
matching usernames are marked as impersonators.

C. Model Accuracy

Three classification metrics were used to evaluate the per-
formance of the algorithm used in this paper. These metrics
are accuracy, precision, and recall. Accuracy was calculated
by dividing the number of correctly predicted values by the
total number of values. The correctly predicted values equal
the sum of True Positives (TP) and True Negatives (TN) while
the total number of values equals the sum of True Positives,
True Negatives, False Positives (FP), and False Negatives (FN)
as shown in Equation 1.

accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision is the proportion of correct positive predictions
of all cases classified as positive and it can be calculated as
shown in Equation 2.

precision =
TP

TP + FP
(2)

On the other hand, the recall measures the proportion of actual
positive labels correctly identified by the model. The recall can
be calculated as shown in Equation 3

recall =
TP

TP + FN
(3)

The proposed model achieved an accuracy of 88% with
precision and recall matrices of 86% and 89% respectively.

V. CONCLUSION AND FUTURE WORK

This paper presents the development of a tool aimed to de-
tect the entity engaging in user impersonation, using machine
learning and web scraping techniques. The tool is designed
to be deployed on a cloud-based infrastructure to enhance
its scalability and accessibility. The proposed approach was
divided into three phases: machine learning, web scraping, and
user verification phase. Each of these phases was complimen-
tary to the other part to generate an accurate result for the
user. The proposed model achieved an accuracy of 88% with
precision and recall matrices of 86% and 89% respectively.

Multiple potential areas can be taken into consideration for
future work. Firstly, a mobile application can be implemented
for iOS and Android devices incorporating the same function-
ality presented in this work. Furthermore, the integration of the
Meta API can enhance the scraping speed and the accuracy
of the search. Additionally, more platforms to scrape can be
added such as LinkedIn and Twitter. Another potential area is
to generate a bigger dataset by increasing the number of users
which means better results.

REFERENCES

[1] M. Glassman, M. J. Kang, Intelligence in the internet age: The emer-
gence and evolution of open source intelligence (osint), Computers in
Human Behavior 28 (2) (2012) 673–682.

[2] D. Learning, Deep learning, High-dimensional fuzzy clustering (2020).
[3] B.-J. Koops, J.-H. Hoepman, R. Leenes, Open-source intelligence and

privacy by design, Computer Law & Security Review 29 (6) (2013)
676–688.

[4] J. R. G. Evangelista, R. J. Sassi, M. Romero, D. Napolitano, Systematic
literature review to investigate the application of open source intelligence
(osint) with artificial intelligence, Journal of Applied Security Research
16 (3) (2021) 345–369. doi:10.1080/19361610.2020.1761737.

[5] Y.-W. Hwang, I.-Y. Lee, H. Kim, H. Lee, D. Kim, Current status and
security trend of osint, Journal of Wireless Communications and Mobile
Computing 2022 (2022).

[6] A. Kanta, I. Coisel, M. Scanlon, A survey exploring open source intel-
ligence for smarter password cracking, Forensic Science International:
Digital Investigation 35 (2020) 301075.

[7] D. V. Lande, E. V. Shnurko-Tabakova, Osint as a part of cyber defense
system (2019).

[8] F. Tabatabaei, D. Wells, Osint in the context of cyber-security, Open
Source Intelligence Investigation: From Strategy to Implementation
(2016) 213–231.

[9] J. Pastor-Galindo, P. Nespoli, F. Gómez Mármol, G. Martı́nez Pérez,
The not yet exploited goldmine of osint: Opportunities, open chal-
lenges and future trends, IEEE Access 8 (2020) 10282–10304.
doi:10.1109/ACCESS.2020.2965257.

[10] Eagle eye, https://github.com/ThoughtfulDev/EagleEye, accessed: 2023-
5-5.

[11] Pimeyes, https://pimeyes.com, accessed: 2023-5-5.
[12] Social mapper, https://github.com/Greenwolf/social mapper, accessed:

2023-5-5.
[13] R. Sharma, V. K. Sharma, A. Singh, A review paper on facial recognition

techniques, in: 2021 Fifth International Conference on I-SMAC (IoT in
Social, Mobile, Analytics and Cloud)(I-SMAC), IEEE, 2021, pp. 617–
621.

[14] R. Jafri, H. R. Arabnia, A survey of face recognition techniques, journal
of information processing systems 5 (2) (2009) 41–68.

[15] W. Ali, W. Tian, S. U. Din, D. Iradukunda, A. A. Khan, Classical and
modern face recognition approaches: a complete review, Multimedia
tools and applications 80 (2021) 4825–4880.

[16] M. A. Khder, Web scraping or web crawling: State of art, techniques,
approaches and application., International Journal of Advances in Soft
Computing & Its Applications 13 (3) (2021).

[17] R. Gunawan, A. Rahmatulloh, I. Darmawan, F. Firdaus, Comparison
of web scraping techniques: regular expression, html dom and xpath,
in: 2018 International Conference on Industrial Enterprise and System
Engineering (ICoIESE 2018), Atlantis Press, 2019, pp. 283–287.

[18] D. K. Mahto, L. Singh, A dive into web scraper world, in: 2016
3rd International Conference on Computing for Sustainable Global
Development (INDIACom), 2016, pp. 689–693.

[19] P. Srivastava, R. Khan, A review paper on cloud computing, International
Journal of Advanced Research in Computer Science and Software
Engineering 8 (6) (2018) 17–20.

[20] Url handling library, https://docs.python.org/3/library/urllib.html, ac-
cessed: 2023-5-5.

[21] N. Zhang, J. Luo, W. Gao, Research on face detection technology
based on mtcnn, in: 2020 international conference on computer network,
electronic and automation (ICCNEA), IEEE, 2020, pp. 154–158.

[22] Social media users, https://www.statista.com/statistics/264810/
number-of-monthly-active-facebook-usersworldwide, accessed: 2023-
5-5.

2023 International Conference on Information Technology (ICIT)

757
Authorized licensed use limited to: Princess Sumaya University for Technology. Downloaded on May 16,2024 at 10:53:43 UTC from IEEE Xplore. Restrictions apply.

		2023-08-26T17:31:42-0400
	Preflight Ticket Signature

