
Scalable and Parameterizable Processor Array
Architecture for Similarity Distance Computation

Awos Kanan
Dept. of Computer Engineering

Princess Sumaya University for Technology
Amman, Jordan

a.kanan@psut.edu.jo

Fayez Gebali
Dept. of Electrical & Computer Engineering

University of Victoria
Victoria BC, Canada

fayez@uvic.ca

Atef Ibrahim
Dept. of Computer Engineering

Prince Sattam Bin AbdulAziz University
Al-Kharj, Saudi Arabia

aa.mohamed@psau.edu.sa

Kin Fun Li
Dept. of Electrical & Computer Engineering

University of Victoria
Victoria BC, Canada

kinli@uvic.ca

Abstract—Processor array architecture is a popular approach
to improve computation of similarity distance matrices; however,
most of the proposed architectures are designed in an ad hoc
manner, some have not even considered dimensionality and size
of the datasets. We believe a systematic approach is necessary to
explore the design space. In this work, we present a technique for
designing scalable processor array architecture for the similarity
distance matrix computation. Implementation results of the pro-
posed architecture show improved compromise between area and
speed. Moreover, it scales better for large and high-dimensional
datasets since the architecture is fully parameterized and only
has to deal with one data dimension in each time step.

Index Terms—Processor arrays, scalable hardware, similarity
measures, parallel computing.

I. INTRODUCTION

The computational complexity of machine learning and
data mining algorithms, that are frequently used in today’s
applications such as embedded systems, makes the design of
efficient hardware architectures for these algorithms a chal-
lenging issue. The computation of similarity distance matrices
is one of the computation kernels that are generally required
by several machine learning and data mining algorithms to
measure the degree of similarity between data samples [1].
For several algorithms such as K-Means [2], SVM [3], and K-
NN [4], distance calculation is considered a computationally
intensive task that accounts for a significant portion of the
processing time, especially when dealing with large and high-
dimensional datasets [5].

Given the complexity of today’s data, machine learning and
data mining algorithms are expected to handle big and high-
dimensional data. Linear [6] and 2-D [7] [8] processor array
architectures have been proposed to accelerate the compu-
tation of similarity distance matrices. 2-D processor arrays
are generally faster than linear arrays as more processing
elements (PEs) are used to perform the computation in parallel.
On the other hand, linear arrays are more suitable for area,
power, and bandwidth-constrained applications. To the best

of our knowledge, data dimensionality and size have not
been considered in previous 2-D processor arrays. For high-
dimensional data, feeding all the features of a single data
element simultaneously is not practical due to I/O band-
width constraints. Linear processor arrays, on the other hand,
are generally more area-efficient and meets I/O bandwidth
constraints at the cost of much slower execution time. In
this paper, we present a systematic approach for developing
scalable processor array architecture for similarity distance
computation based on our recent work in [9] with more control
on area and I/O requirements and better compromise between
area and speed.

The rest of this paper is organized as follows: Distance
computation problem is formulated in Section II. In Section
III, the systematic technique that is employed to develop
the processor array architecture is introduced. The proposed
architecture is presented in Section IV. Design comparison and
implementation results are presented in Section V and Section
VI, respectively. Finally, Section VII concludes the paper.

II. SIMILARITY DISTANCE COMPUTATION

Given dataset X of N samples and dataset Y of K samples,
where each sample in the two datasets has M features. A
similarity measure such as Manhattan, Euclidean, or Cosine
distance [1] [10] can be used to generate a distance matrix
D of K ×N elements. The distance between the nth sample
of dataset X and the kth sample of dataset Y is represented
by the value of element D(k, n) of matrix D. In this paper,
Manhattan distance is used to illustrate the calculation of
similarity distance matrix between data samples of the two
datasets X and Y. Manhattan distance can be expressed as:

D(k, n) =
M−1∑
m=0

|X(m,n)− Y (k,m)| (1)

0 ≤ k < K, 0 ≤ n < N,

2019 10th International Conference on Information and Communication Systems (ICICS)

978-1-7281-0045-6/19/$31.00 ©2019 IEEE 245

Authorized licensed use limited to: Princess Sumaya University for Technology. Downloaded on May 09,2024 at 10:24:55 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Computation domain.

where N and K are the number of samples of datasets X
and Y, respectively, and M is the dimensionality (number of
features) of the two datasets. The methodology employed to
perform design space exploration in our work [9] relies on
analyzing data dependencies using dependence matrices that
show how input and output variables depends on indices k, m,
and n [11]. The emphasis of this paper is on the parallelization
of similarity distance computation regardless of the similarity
measure used. Hence, the work presented in this paper can be
generalized to other similarity measures.

Similarity distance computation in the K-Means clustering
algorithm [2], for instance, is performed in the same way
described in this section. Distances between N samples of
dataset X and the set of centroids of K clusters Y are
calculated to find the closest cluster for each data sample.

III. METHODOLOGY OF PROCESSOR ARRAY DESIGN

In our recent work [9], we have systematically explored the
design space of 2-D processor array architectures for similarity
distance computation using the methodology proposed by the
second author in [12]. Six processor array architectures were
obtained using linear scheduling and projection operations. In
this work, nonlinear scheduling and projection are employed
to develop a scalable and parameterized processor array archi-
tecture starting from one of the six obtained architectures that
is chosen based on criteria discussed later in this section.

A. Computation Domain

As shown in Fig. 1, the computation domain D is defined
by the three indices of the algorithm [11]. Every point in the
computation domain has three coordinates that are represented
as:

p =
[
k m n

]t
(2)

Fig. 2: Equitemporal zones for a linear scheduling function
obtained in [9].

B. Data Scheduling

A scheduling function assigns each point in the computation
domain a time value. Based on the choice of broadcasting or
pipelining algorithm variables, we were able to obtain four
linear scheduling functions in [9]. Linear scheduling can be
used to perform design space exploration for the problem in
hand. Depending on the values of K, M , and N , in order to
obtain scalable architectures that are amenable for hardware
implementation, more control on the computational load at
each time step is required. Fig. 2 shows one of the obtained
timing options for 2-D processor arrays. In this timing option,
all points on any given plane with the same value of coordinate
m are assigned the same time value and said to belong to a
single equitemporal zone [11]. For large-scale data, having
a large number of points executing at the same time results
in an impractical hardware architecture that requires a huge
number of PEs and the feeding of a large number of data
inputs simultaneously. Nonlinear scheduling can be used for
more control on the computational load to be performed at
each time step. In this paper, our approach is to choose one of
the linear scheduling alternatives obtained in [9] and develop a
nonlinear scheduling function with smaller and parameterized
equitemporal zones. Analyzing the four scheduling functions
in [9], we choose to partition the equitemporal zones of the
scheduling function shown in Fig. 2 for the following reasons:

• The resulting processor array architecture has the best
time complexity among the six obtained architectures.

• Simple feeding of data without any delay registers.
• No communication between PEs. Hence, easier partition-

ing without any feedback connections.
• Partial outputs are stored in local registers in the PEs.

Hence, straightforward accumulation of partial results at
each time step.

Planes in Fig. 2 that represent equitemporal zones can be
partitioned into smaller zones with parameterized dimensions.
Rather than assigning all points on a plane the same time
value, only points in the new smaller zones are assigned the

2019 10th International Conference on Information and Communication Systems (ICICS)

246

Authorized licensed use limited to: Princess Sumaya University for Technology. Downloaded on May 09,2024 at 10:24:55 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: 2-D equitemporal zones using nonlinear scheduling function (3), K=6, M=3, wk= 3, and wn= 2.

same time value. The partitioning adopted in this work along
with the order of execution are shown in Fig. 3. Rather than
calculating all N ×K distances at each time step using linear
scheduling, nonlinear scheduling allows for more control to
calculate only wk × wn distances at each time step. The
nonlinear scheduling function that assigns time values to
points in the computation domain is given by:

t(p) =
⌊

k

wk

⌋
+Hkm+HkM

⌊
n

wn

⌋
(3)

where:

Hk =

⌊
K − 1

wk

⌋
+ 1 (4)

C. Projection Operation

Linear projection is defined as the mapping of several points
in the n-dimensional computation domain D to a single point
in a k-dimensional domain D̃, where k ≤ n [12]. It simply
eliminates coordinates of axes along the projection direction
vectors with no control on the size of the projected processor
array. Previously obtained architectures in the literature are
1-D or 2-D processor arrays of size K, M , or N in each
dimension. For more control on the size of the resulting
processor array and to achieve full utilization of hardware
resources, we choose to assign each point in the equitemporal
zones described in the previous subsection to a PE in the
projected processor array. This ensures that all PEs are always
busy with more control on the size of the resulting architecture
by choosing parameters wk and wn to meet area and I/O
bandwidth constraints. Each point p =

[
k m n

]t ∈ D will
be mapped to processing element PEi,j where:

i = k mod wk (5)

j = n mod wn (6)

Fig. 4: Proposed processor array architecture with wk= 3, and
wn= 2.

IV. THE PROPOSED PROCESSOR ARRAY ARCHITECTURE

The processor array architecture corresponding to the non-
linear scheduling and projection described in the previous
section is shown in Fig. 4. This architecture is obtained by
partitioning the original K ×N processor array we proposed
in [9] using linear scheduling and projection operations. The
proposed architecture is a parameterized processor array of
wk×wn PEs. Both inputs X and Y are broadcast and output
D is localized. As shown in Fig. 5, partial results of output
variable D calculated at each time step for a given value of m
are stored in local registers and hence, simple accumulation
of outputs at each time step is possible.

In the case of K-Means clustering algorithm, for instance,
a total of wk × wn distances between wn samples of input
data X and wk cluster centroids are generated every M clock
cycles by the proposed architecture. The total number of cycles
required to calculate all elements of distance matrix D is:

Ctotal = dK/wke dN/wneM (7)

2019 10th International Conference on Information and Communication Systems (ICICS)

247

Authorized licensed use limited to: Princess Sumaya University for Technology. Downloaded on May 09,2024 at 10:24:55 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: Processing element structure for the proposed architec-
ture.

V. DESIGN COMPARISON

The 2-D processor array proposed in [7] has K ×N PEs.
For datasets of thousands or even millions of samples N ,
the proposed architecture is not feasible for hardware imple-
mentation as it consists of a huge number of PEs with large
number of data inputs being fed simultaneously. To overcome
these limitations, the authors of [8] have proposed another
2-D processor array architecture of K × M PEs. However,
the proposed architecture is not practical for high-dimensional
datasets with large number of features M per sample as it
requires feeding all features of each sample simultaneously. In
both architectures, data is fed in a skewed pattern and hence,
a large number of delay registers are required for large and
high-dimensional datasets.

The linear processor array architecture proposed in [6]
requires less area and I/O pins compared to 2-D architectures.
However, the time complexity is much higher since lesser
number of PEs are involved, with only one feature of each
sample of dataset X being fed at a time.

The proposed architecture scales better for high-dimensional
data since it deals only with one dimension of data at each
time step. As shown in Table I, the proposed architecture is
fully parameterized. Parameters wk and wn can be chosen to
determine the number of PEs so that area and I/O bandwidth
constraints are met.

VI. IMPLEMENTATION RESULTS

The proposed processor array architecture along with the 2-
D and 1-D processor arrays previously obtained in [8] and [6],
respectively, are implemented on FPGA, to accelerate distance
computation involved in clustering data samples of the letter
recognition dataset from UCI Repository [13]. The dataset
consists of 20,000 samples with each having 16 numerical
attributes represented as integer values in the range from 0
to 15. The three architectures are implemented in Verilog
hardware description language using Xilinx ISE Design Suite

13.4 to target Xilinx Virtex7 XC7VX330T. Table II and Fig. 6
show implementation results for distance calculation involved
in one iteration of the K-Means clustering algorithm with
M =16 features, N=20,000 samples, and different number of
clusters K. Execution times are calculated using the maximum
frequencies achieved after implementing each architecture and
the required clock cycles shown in the fourth column of Table
I.

Implementation results show that the proposed architecture
achieves the best compromise between area and speed. The
linear architecture in [6] has the worst Area-Delay product
due to delay registers that add up to its area complexity. The
proposed architecture achieves an Area-Delay product that
is comparable and even slightly better than that of the 2-D
architecture in [8], using an average of only 6% and 48% of
its area and I/O pins, respectively.

Fig. 6: Area-Delay Product.

VII. CONCLUSION

A systematic methodology to develop scalable processor
array architecture for similarity distance computation is pre-
sented in this paper. Compared to previous processor arrays
that have been developed using ad hoc techniques, the pro-
posed architecture is realized based on systematic full design
space exploration of the distance computation problem.

The fully parameterized architecture proposed achieves bet-
ter compromise between area and speed with more control on
the number of PEs and I/O pins. Moreover, the methodology
introduced makes scalability possible in the designed architec-
ture.

REFERENCES

[1] R. Xu, D. Wunsch et al., “Survey of clustering algorithms,” Neural
Networks, IEEE Transactions on, vol. 16, no. 3, pp. 645–678, 2005.

[2] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a review,”
ACM computing surveys (CSUR), vol. 31, no. 3, pp. 264–323, 1999.

[3] T.-M. Huang, V. Kecman, and I. Kopriva, Kernel based algorithms for
mining huge data sets. Springer, 2006, vol. 1.

[4] S. Kotsiantis, “Supervised machine learning: a review of classification
techniques,” Informatica, vol. 31, no. 3, pp. 249–269, 2007.

[5] A. Choudhary, R. Narayanan, B. Ö. Ikyılmaz, G. Memik, J. Zambreno,
and J. Pisharath, “Optimizing data mining workloads using hardware
accelerators,” in Proc. of the Workshop on Computer Architecture
Evaluation using Commercial Workloads (CAECW), 2007.

2019 10th International Conference on Information and Communication Systems (ICICS)

248

Authorized licensed use limited to: Princess Sumaya University for Technology. Downloaded on May 09,2024 at 10:24:55 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Design Comparison

Design
Scheduling

and
Projection

Circuit Complexity Time Complexity Inputs Outputs

2-D Processor Array [7] Linear
K ×N PEs

1
2
(K2 +N2−K−N) Registers

K +M +N K +N K ×N

2-D Processor Array [8] Linear
K ×M PEs

1
2
M(M − 1) Registers

K +M +N M K

1-D Processor Array [6] Linear
K PEs

1
2
K(K − 1) Registers

K +MN − 1 K + 1 K

Proposed Nonlinear wk × wn PEs dK/wke dN/wneM wk + wn wk × wn

TABLE II: Implementation Results

K
2-D Architecture [8] 1-D Architecture [6]

Proposed Architecture
wk = K/2, wn = 2

Area
(# Slices)

Execution Time
(µ Sec)

Bonded
IOBs

Area
(# Slices)

Execution Time
(µ Sec)

Bonded
IOBs

Area
(# Slices)

Execution Time
(µ Sec)

Bonded
IOBs

4 664 105 338 76 1799 93 32 1520 88

8 1192 107 370 152 2075 157 60 1612 136

16 1988 108 434 249 1916 285 114 1624 232

32 3880 109 562 488 2130 533 217 1713 424

[6] M. F. Hsieh and C. H. Lai, “A serial input VLSI systolic architecture
for a clustering analyser,” International journal of electronics, vol. 84,
no. 3, pp. 269–284, 1998.

[7] H. Cheng and C. Tong, “Clustering analyzer,” Circuits and Systems,
IEEE Transactions on, vol. 38, no. 1, pp. 124–128, 1991.

[8] M. Lai, M. Nakano, Y. Wu, and C. Hsieh, “VLSI design of clustering
analyser using systolic arrays,” in Computers and Digital Techniques,
IEE Proceedings-, vol. 142, no. 3. IET, 1995, pp. 185–192.

[9] A. Kanan, F. Gebali, and A. Ibrahim, “Design space exploration of 2-D
processor array architectures for similarity distance computation,” IEEE
Transactions on Parallel and Distributed Systems, vol. 28, no. 8, pp.
2218–2228, Aug 2017.

[10] D. G. Perera and K. F. Li, “Parallel computation of similarity mea-
sures using an FPGA-based processor array,” in Advanced Information
Networking and Applications, 2008. AINA 2008. 22nd International
Conference on. IEEE, 2008, pp. 955–962.

[11] F. Gebali, Algorithms and Parallel Computing. John Wiley & Sons,
2011.

[12] F. El-Guibaly and A. Tawfik, “Mapping 3-D IIR digital filter onto
systolic arrays,” Multidimensional Systems and Signal Processing, vol. 7,
no. 1, pp. 7–26, 1996.

[13] C. Blake and C. Merz, “UCI repository of machine learning databases.”
[Online]. Available: http://www. ics. uci. edu/˜ mlearn/ML-Repository.
html, 1998.

2019 10th International Conference on Information and Communication Systems (ICICS)

249

Authorized licensed use limited to: Princess Sumaya University for Technology. Downloaded on May 09,2024 at 10:24:55 UTC from IEEE Xplore. Restrictions apply.

