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Abstract

The advent use of smart devices has enabled the production of a wealth of applications that facil-

itate user interaction in various forms. Speech, the most natural and common form of interaction,

reveals private and sensitive information about the user, therefore leaking poses a risk on the user’s

freedom of speech. Speech may be acquired and used with speech synthesis systems to produce

speech recordings that reflect the same user’s speaker identity and can be used to attack speaker

verification systems. One solution is to anonymize the speaker by hiding his identity from speech

before sharing it. In this thesis, synthesized fake identities with audible human voices are used to

anonymize speech. The proposed method relied on using adversarial training to optimize the pro-

duction of fake identities that would enhance the anonymization process. These fake identities are

generated using a Generative Adversarial Network (GAN).

Several GAN types were investigated for this purpose and the conditional tabular GAN (CT-

GAN) showed the best performance among all GAN types according to different metrics. Experi-

mental results proved the ability of the proposed anonymization approach to outperform the best

available anonymization systems in terms of the ability to produce a diverse amount of speaker

identities (cross cosine similarity distribution, average of 0.75), the closeness between the fake and

real identities PDFs (0.55,0.42 KS score for female, males) and the word-error-rate assessed by an

external ASR system, achieving 6.27% and 6.5% on libri-dev and libri-test benchmarks, respectively.

Keywords: Speaker anonymization, Voice Privacy, Generative Adversarial Networks, CT-

GAN, X-vector.
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Chapter 1

Introduction

1.1 Motivation

Many technological interfaces nowadays support voice-driven interactions. Speech recordings are

being collected from smartphones, televisions, watches, and smart cars. This suggests that speech

recordings are transmitted over networks and stored in servers or processed by third-party cloud-

based infrastructure [1]. Moreover, these technologies support seamless user interaction where the

user can start speaking without pushing any button, which means that these devices are always

listening and processing data to detect the presence of a wake-up word. Therefore, there is a great

risk for speech data to be exposed.

Systems that understand speech and transcribe it into textual format are referred to as speech

recognition systems, whereas systems that identify the identity of the speaker are called speaker

recognition systems. Speaker recognition technology is becoming increasingly ubiquitous [2], being

used for authenticating individuals and access control across a broad range of different services and

devices, e.g., telephone banking services and smart devices that either contain or provide access to

personal or sensitive data.

Despite the clear advantages and spread of biometrics technology, persisting concerns regarding

intrusions into privacy have dented public confidence. Intrusions into personal privacy are clearly

unacceptable and the responsibility to preserve privacy is now demanded in the recent EU General

Data Protection Regulation (European Parliament and Council, 2016a, GDPR) [3]. The GDPR is

the regulation in the EU on data protection and privacy in the European Union (EU) and the Eu-

ropean Economic Area (EEA) that addresses the transfer of personal data outside the EU and EEA

areas. It aims primarily to give control to individuals over their personal data. Adequate privacy

preservation is therefore essential to ensure that sensitive bio-metric data, including voice recordings

1
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or speech data, are properly protected from misuse. However, privacy preservation schemes of speech

data shouldn’t compromise the seamless experience of such voice-driven systems.

Speaker anonymization systems are systems that provide a form of speech privacy preservation

as they suppress the original identity of the speaker by making the utterances sound as if they were

uttered by someone else while leaving all other information in a speech signal intact. The baseline

for such technology was first provided by The VoicePrivacy INTERSPEECH 2020 challenge [4], in

an attempt to gather effort in the research community to facilitate the development of voice privacy

preservation technology, in a response to the recent EU legislation on the protection of personal data.

1.2 Problem Statement

Speaker anonymization typically aims at suppressing the speaker’s identity (timbre, pitch, speaking

rate, and speaking style) by modifying the original speech signal to make it sound like an anony-

mous speaker while maintaining the linguistic content, speech quality, and naturalness. Moreover,

anonymization should be robust against attackers who try to determine the original speaker’s iden-

tity. The privacy preservation task is typically formulated as a game involving one or more users

who publish some data and an attacker (also called an adversary) who gains legal or illegal access

to this data or to derived data and attempts to infer personal information about the users [5].

The VoicePrivacy challenge 2020 addressed the anonymization problem and provided a base-

line system for concealing speaker identity by disentangling the linguistic content from the speaker

identifiable information. They replaced the speaker identity i.e. x-vector, which is a neural network-

based latent representation, with another speaker’s identity called a pseudo-identity. Their work

was based on the use of a pool of real speakers’ identities in which anonymization took place using

some distancing techniques. The problem with their approach is the use of real speaker identities

in the anonymization process, in which it can be argued that anonymized speech can protect the

identity of one user at the expense of exposing another identity. Therefore, we propose another

level of anonymity introduced by a generative adversarial network that’s trained to synthesize fake

human audible x-vectors.

1.3 Contribution

The main contribution in this thesis is that we managed to replace the use of static identities with a

method to generate synthetic fake identities with audible human voice characteristics that improved
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the performance of speaker anonymization. We believe that this is the first attempt in synthesizing

human speaker identities using generative adversarial networks (GAN).

Several GAN types were investigated for this purpose and the conditional tabular GAN (CTGAN)

showed the best performance among all GAN types according to different metrics. Experimental

results proved the ability of the proposed anonymization approach to outperform the best available

anonymization systems in terms of the ability to produce a diverse amount of speaker identities (cross

cosine similarity distribution, average of 0.75), the closeness between the fake and real identities

PDFs (0.55,0.42 KS score for female, males) and the word-error-rate assessed by an external ASR

system, achieving 6.27% and 6.5% on libri-dev and libri-test benchmarks, respectively.

1.4 Organization

The rest of the thesis is organized as follows. In Chapter 2, a general background of the speaker

anonymization problem is presented in addition to providing a survey of the related literature.

Chapter 3 discusses different generative adversarial networks (GAN) designs and the methodology

followed towards developing an effective speaker identity generation model. Chapter 4 outlines

several metrics that are used to evaluate different GAN designs followed by a discussion of the

findings of the conducted experiments. Chapter 5 summarizes the main findings of this thesis.

Finally, and discusses some of the possible future directions of the work.



Chapter 2

Background and Literature Review

This chapter reviews the background and literature relevant to the speaker anonymization problem.

The first section provides a background on smart assistants. The section begins with a discussion

of the development history of smart assistants’ industry and a general overview of its underlying

sub-blocks. The second section draws a canvas of the available literature in the area of speaker

anonymization. An outline of the work done in this thesis in the context of the literature is also

provided.

2.1 Background

In this section, we discuss the essential topics that define the background for the speaker anonymiza-

tion problem. First, we introduce smart assistants as a pipeline and as a business product. Then,

we take a closer look at the speech signal and define the information we can extract from it, namely,

speech recognition and speaker recognition. We discuss design details and different use cases for

each module.

2.1.1 Smart Assistants

In the past decade, digitization has revolutionized the world around us by bringing new possibilities

that ease our daily life activities. Modern software products that understand natural language voice

commands and complete tasks for the user are called Smart Personal Assistants (SPA) [6] or Vir-

tual Assistants. They rely on emerging technologies such as artificial intelligence, natural language

processing, and speech recognition. A typical virtual assistant is able to interpret human speech,

deduce the intent, perform an action and respond via synthesized speech. Actions might include

4
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asking questions, controlling home devices, or managing tasks such as writing an email, playing

a song, calling someone, or setting a reminder. Popular virtual assistants nowadays are Google’s

Assistant, Amazon’s Alexa, Apple’s Siri, Microsoft’s Cortana, and Samsung’s Bixby.

Virtual assistants could be deployed on the cloud or on devices. A cloud-based service typically

requires an internet connection to work, as the user’s commands get transferred to the cloud via the

network, processed on the server, and then transferred back to the device through the network. In

contrast, the on-device service executes the whole process without the need for an internet connec-

tion as the service is installed on the device’s hardware. The deployment choice usually demands

architectural changes. For instance, designing an on-device model requires careful consideration

of latency, memory footprint, and processing power. Such design limitations should be taken into

account while developing an on-device service that’s at least as accurate as the cloud-based one.

On-device deployment choice has a number of advantages such as personalizing the service accord-

ing to the user’s data and preferences (contact list, most used applications, user’s speech style, and

accent, etc.) and preserving the user’s privacy as the data won’t travel through the network or get

processed on the cloud.

A virtual assistant could be a service on a mobile device or could be hosted on a dedicated de-

vice providing this service, just like Amazon’s Echo Virtual Assistant. The typical user experience

scenario would involve the user calling out the wake word, “Okay Google” for Google’s Assistant,

for example, then the wake-up model will trigger the launch of the smart assistant, ready to receive

a command which typically involves a simple language request. In the case of a cloud-based service,

this command is processed and stored in the cloud. Service providers usually keep track of the data

and try to make use of it to enhance their systems. In developing AI-based services, the most chal-

lenging part of the process is to mitigate differences between training data and testing data (usually

a subset from a real scenario). The best scenario would be if the system can train on real-world

data i.e. usage data.

2.1.1.1 Architecture

Figure 2.1 depicts the basic architecture of the virtual assistant. Basically, the pipeline consists of

four main blocks: Automatic Speech Recognition (ASR), Natural Language Understanding (NLU),

Dialog Manager (DM), and Text-to-Speech (TTS).
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Figure 2.1: Architecture of a Smart Assistant

First, the spoken audio is converted to textual representation via the ASR Engine. Then, the

text is “parsed” to understand the request (“intent”) and label any data (“entities”) by an NLU

engine. The DM is responsible for the reasoning. For example, it should answer questions like: Is

the user’s request complete? Does the virtual assistant need to ask further questions? Can pro-

cessing the request proceed? What is the needed response? The dialog manager is also responsible

for incorporating context in reasoning such as considering the presence of contextual elements (time

and location). Finally, the TTS engine is needed in case the response of the virtual assistant is of

spoken nature.

2.1.1.2 Market Trend

Studying patterns in the market aids in realizing the importance of investing in current technologies

and helps forecast upcoming challenges. Google says that 27% of the global online population is using

voice search on mobile [7]. In 2020, STATISTA found that approximately 64% of surveyed experts

within the industries of E-learning and market research used speech-to-text automated transcription

[8] whereas TECHCRUNCH reports that the number of devices with voice assistants installed in

2020 was over two billion [9].

According to Market Research Future (MRFR) [10], the size of the global speech recognition

market is expected to reach $16 billion by 2023. In 2018, the global Captioning and Subtitling

Solutions market size was 220 million USD and it is expected to reach 370 million USD by the end

of 2025, according to Valuates Reports [11]. The Microsoft market intelligence team found that 41%

of users report concerns around trust, privacy, and passive listening [12].

2.1.2 Automatic Speech Recognition

In this section, we provide an overview of the history, mathematical model, evaluation metrics, and

benchmark datasets related to automatic speech recognition.
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2.1.2.1 History

Since the 1950s, computer scientists have been researching ways to make computers understand

human speech. The initial efforts for building an ASR go back to the 1950s where attempts ranged

from recognizing isolated digits from a single speaker at Bell Labs [13], recognizing 10 different syl-

lables of a single speaker relying on spectral measurements at RCA Labs [14], building a phoneme

recognizer to recognize four vowels and nine consonants using a spectrum analyzer and a pattern

matcher at University College in England [15] and the development of a phoneme recognizer in MIT

that recognizes ten phonemes in a speaker-dependent manner [16]. In the 1960s, researchers at RCA

labs proposed a solution to the non-uniformity of time scales in speech, where they proposed a set

of elementary methods to detect speech starts and ends [17]. In the late 1960s, Vintsyuk attempted

to solve the problem of aligning two speech utterances using dynamic programming [18].

In the 1970s, several milestones were achieved. The Russians have made the discrete utterance

recognition system feasible and stable to use and also helped advance the use of pattern recognition

ideas in speech recognition[19]. AT&T Bell Labs researchers used some complex clustering algo-

rithms to determine the number of unique patterns required to identify all variations of different

words across a language in an attempt to create speech recognition systems that are truly speaker-

independent [20].

In the 1980s, a change in technology occurred by switching from time wrapping template-based

techniques to statistical modeling methods; especially the Hidden Markov Model (HMM). The De-

fense Advanced Research Project Agency (DARPA) community has led a large research project in

the 1990s to enhance continuous speech recognition systems and shifted their emphasis to developing

natural language front ends to the recognition system. At about the same time, speech technology

has been increasingly used within telephone networks to automate and enhance the operators’ ser-

vice [21].

In the early years of the 2000s, the HMM complemented with a feed-forward artificial neural

network (ANN) has been the adopted architecture for the state-of-the-art ASR [22]. Nowadays,

long-short term memory (LSTM), a type of recurrent neural network (RNN), is being used for

speech recognition in combination with different deep learning techniques.

2.1.2.2 Mathematical Model

Speech is the expression of ideas and affections by articulated sounds. It is the primary mode of

communication between humans and can be safely assumed that people are more comfortable using

speech as a communication scheme with machines as opposed to other schemes such as writing.
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Automatic speech recognition (ASR) is a software solution that is designed to allow the machine to

interpret speech into text, as shown in Figure 2.2. The machine receives the input through the mi-

crophone or telephone and converts it into text in the respective language. A typical ASR should be

able to perceive the given input, recognize the spoken words and then pass these words as an input

to the next module so that action can be performed [23, 24, 25]. Communication between humans

is dominated by spoken language, therefore it is natural for people to expect speech interfaces with

machines [26].

Figure 2.2: Basic Operation of the ASR System

Mathematically, an ASR system is a function Y = f(X) that maps a given input sequence of n

audio samples X; X = {X1, X2, X3, ..., Xn}, from a recorded speech signal, to an output sequence Y ;

Y = {Y1, Y2, Y3, ..., Ym}, of m words. The output sequence Y which consists of words W represents

the transcription to the input audio file, and it has the highest posterior probability P (Y | X), where

P (Y | X) is

W = argmax P (W | X)

= argmax
P (W )P (X |W )

P (X)

(2.1)

where P (W ) is the probability of the occurrence of the word, P (X) is the probability that X

is present in the signal, and P (X | W ) is the probability of the acoustic signal X occurring in

correspondence to the word W .

Developing an ASR engine that models this probability is a quite complex task as it should be

robust to speaker variations, context, and acoustic environment. For instance, human speech can

vary in speed, pronunciation, volume and still result in the same transcription. Mixing such vari-

ability with the environmental scenarios such as noise, echo, reverberation, and distance from the
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microphone increases the complexity of the task.

The ASR engine typically consists of 4 modules; prepossessing module, feature extraction mod-

ule, classification model, and language model, as shown in Figure 2.3. The prepossessing model

applies noise reduction on the input signal as it is usually noisy. There are a number of filters

and methods that can be applied to the input signal to improve its signal-to-noise ratio. Framing,

normalization, end-point detection, and pre-emphasis are some of the frequently used methods to

reduce noise in a signal [27, 28, 29].

Figure 2.3: Architecture of the ASR Engine

After pre-processing, the clean speech signal is then passed through the feature extraction mod-

ule. The performance and efficiency of the classification module are highly dependent upon the

extracted features [30, 31, 32]. The most commonly used feature extraction methods are Mel fre-

quency cepstral coefficients (MFCCs), linear predictive coding (LPC), and discrete wavelet transform

(DWT) [32, 33, 34, 35].

The third module is the classification model which takes the extracted features as an input

and predicts the corresponding textual output. There are various approaches to implement such

a module. The first is to learn a joint probability distribution from the training set and use that

distribution to predict the future output. This approach is called a generative approach; Hidden

Markov Models (HMM) and Gaussian Mixture Models (GMM) are some common examples. The

second approach is to learn model parameters through training on input features and their corre-

sponding output text. Support Vector Machines (SVM) and ANN are the most common examples.

Hybrid approaches are also used; HMM-ANN for example [36].

The fourth module is the language model where various rules and semantics of the language are

introduced through the incorporation of this model in decoding the output of the ASR. Although

recent ASR implementations do not require the use of a language model, they still can enhance the

model accuracy significantly.
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2.1.2.3 ASR Evaluation Metrics

This section explains in detail the evaluation metrics used to evaluate the performance of an ASR.

The performance usually depends on a couple of factors, namely, speed and accuracy.

2.1.2.3.1 Speed

The real-time factor (RTF) is the metric used for calculating the speed of a proposed model. It can

be computed using the following formula:

RTF =
P

I
(2.2)

where P is the time that the model needs to process the input and I is the duration of the input

audio. An RTF of 1 means that the input was processed in ”Real-Time”. This metric is highly

dependent on the hardware infrastructure therefore it has to do with more than just the speed of

the ASR model.

2.1.2.3.2 Accuracy

The metric word error rate (WER) is usually used to measure the accuracy of the ASR. It is hard

to calculate as the output sequence may not be of the same length as the ground truth sequence. It

can be calculated as follows:

WER =
S +D + I

N
(2.3)

here S is the number of substitutions in the output as compared to the ground truth. D is the

number of deletions, I is the number of insertions and N is the total number of words in the ground

truth.

A variation of the WER is the word recognition rate (WRR), which is calculated as:

WRR = 1−WER

=
N − S −D − I

N

=
H − I
N

(2.4)

where H = N − (S +D) represents the total number of correctly guessed words.
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2.1.2.4 Benchmark Datasets

This section discusses in detail some of the commonly used datasets for training and benchmarking

different ASR designs. It is common in speech-related research communities to evaluate proposed

systems based on certain publicly available datasets so that multiple solutions can be fairly compared

on the same benchmark. The listed datasets are the formal ones used in the research community

and we have used some of them to evaluate our approach.

2.1.2.4.1 LibriSpeech

LibriSpeech corpus [37] is one of the most commonly used corpora for training and benchmarking

ASR models. It consists of approximately 1000 hours of 16kHz read English speech, prepared by

Vassil Panayotov with the assistance of Daniel Povey. The data is derived from reading audiobooks

from the LibriVox project and has been carefully segmented and aligned.

2.1.2.4.2 CSTR VCTK Corpus

The VCTK corpus [38] includes speech data uttered by 109 English speakers with various accents,

where each speaker reads about 400 utterances. All recordings were converted into 16 bits, down-

sampled to 48 kHz, and manually end-pointed. This dataset contains almost 9h of audio data.

2.1.2.4.3 TIMIT acoustic-phonetic continuous speech Corpus

The TIMIT corpus is an acoustic-phonetic continuous speech corpus [39]. It has recordings of 6300

phonetically rich sentences, read by 630 speakers of eight major dialects of American English. The

training set consists of 3.14 h of recording; the rest is divided into the test and development set

respectively.

2.1.3 Automatic Speaker Recognition

As shown in Figure 2.4, the term speech signal processing often encompasses a number of func-

tionalities such as recognition, classification, or feature extraction. The main focus of this thesis is

recognition.
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Figure 2.4: Speech Signal Processing Functionalities

Speaker recognition is the other type of recognition performed on speech signals besides speech

recognition. This model answers the question of (who is speaking?) as opposed to speech recognition

which provides an answer for (what is spoken?). Automatic speaker recognition is the process of

recognizing the speaker automatically based on their voice. The recognition task can be used for

speaker identification and/or speaker verification.

Speaker verification is where the system matches the claimed identity against a specific speaker’s

voice model, whereas speaker identification is where the system tries to match an unknown speaker

against a group of known voices [40]. Speaker verification/identification is divided into text-dependent

and text-independent. Text-dependent systems require providing the same utterance in training and

testing (for example, wake-up systems) while text-independent systems don’t rely on a specific text.

In the next subsection, we provide a detailed overview of the automatic speaker verification sys-

tem. We specifically discuss its definition and purpose, introduce the concept of a speaker identity

and provide some development history on that, and finally conclude with some evaluation metrics

and benchmarking details.
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2.1.3.1 Automatic Speaker Verification

Smart assistants provide a hand-free experience for users in which they can control their smart

devices and home appliances via speech. As user security is a major concern in such a voice-driven

interaction interface, a robust speaker verification module is essentially needed. For example, bank

transactions may be verified through a specific sentence uttered by the user to verify his identity.

Siri, Google Assistant, and Alexa require a certain keyword uttered by the user’s voice. Once verified

the devices are configured to respond and access its services.

For the urgent need to develop better speaker verification/identification models, a number of

challenges have been held for the speaker recognition task such as the NIST [41] speaker recognition

evaluation (SRE), VoxCeleb [42], and the speakers in the wild (SITW) speaker recognition challenge

[43].

Automatic speaker verification (ASV) system behavior can be illustrated by the pipeline in Fig-

ure 2.5 [2]. Typically, the user is required to record a certain utterance N number of times, ”Hey

Siri”, for example. This is called the enrollment phase where features are extracted from the given

data and the user’s voice is translated into a speaker model representing the speaker’s voice-print

and it is saved for reference. At the testing phase, the extracted features will be compared against

the enrolled speaker model. The similarity score is calculated between the enrollment speaker and

the test speaker. If the score is higher than a predefined threshold then the identity is verified;

otherwise, authentication will be rejected. As opposed to that, in speaker identification, the testing

speaker is compared with multiple known speaker models to determine the best match.

Figure 2.5: Basic Speaker Verification System
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2.1.3.2 Speaker Identity

Speaker modeling is essential in the process of speaker verification. In early research, vector quanti-

zation (VQ) was used [44] for speaker verification. Then GMMs were proposed for speaker modeling

[45]. A GMM is a combination of clusters of probability density functions (PDFs). When a test

utterance is given, it can compute the likelihood for each cluster and make a comparison. The cluster

with the highest probability is assumed to correspond to the speaker. In GMM, data is modeled

as different clusters, each has its own mean vector, weight parameters, and covariance matrix. The

likelihood of an utterance is given by:

f(xn | λ) =

M∑
i=1

πiN (xn | µi, σi) (2.5)

where n is the index for a random vector, i is the index for the cluster while M is the number of

clusters. µi is the mean vector, σi) is the covariance matrix, and pii is the weight for each component

of the GMM.

With the help of GMMs, and to make the speaker verification more general, the universal back-

ground model (UBM) was proposed [46], in which the speaker model can be modified based on a

background or world model. In GMM-UBM [2], a supervector, which is made by concatenating the

parameters of each component, is used as the feature vector for verification. The i-vector approach

is just a dimensionality reduction of GMM supervector, which is like principal component analysis

(PCA) on GMM supervectors.

With the application of machine learning and deep learning [47] recent research focuses on DNN-

based text-dependent verification with “Hello Google”. In [48], the concept of x-vector is introduced

where the focus is more on text-independent verification. Since then, the x-vector has been used as

a baseline in many papers in the ASV field.

The x-vector extractor is a DNN consisting of seven fully connected layers, a stats pooling layer,

and a SoftMax output layer, as listed in Table 2.1, where T denotes speech length, t indicates t-th

frame, . is a set of frame indices, and N is the number of speakers in training data. This DNN takes

24-dimensional filter banks as input, and the first three layers splice several frames of the previous

layer’s output as its input. As a result, the third layer can extract one feature vector that covers 15

input frames of the filter bank features. To deal with the varied length of the input speech, a stats

pooling layer is used after the fifth layer to calculate the mean and variance of the overall output

of the fifth layer. The SoftMax layer predicts the probability that the input speech is from each of

the N speakers in the training data. Once the network is trained on a database containing a large

number of speakers, the outputs of the higher layers can be used to represent the speaker space, and

the trained model can be used to extract the speaker identity for a new input speech signal. Finally,
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the utterance-level x-vectors of a speaker are averaged as the speaker-level x-vector.

Table 2.1: Network Architecture of the x-vector System

Layer Layer context Context Input X Output

1 [t - 2; t + 2] 5 120 X 512

2 t - 2; t; t + 2 9 1536 X 512

3 t - 3; t; t + 3 15 1536 X 512

4 t 15 512 X 512

5 t 15 512 X 1500

Stats [0,T) T 1500T X 3000

6 0 T 3000 X 512

7 0 T 512 X 512

softmax 0 T 512 X N

2.1.3.3 ASV Evaluation Metrics

The optimal behavior of an ASV system would be to properly identify the enrolled speaker while

rejecting all other speakers’ attempts. The performance of such a system can be assessed by two

metrics. The first is the false acceptance ratio (FAR), which is the percentage of times it falsely

accepts an un-enrolled speaker, shown in Equation 2.6. The second metric is the false rejection

ratio (FRR), defined in Equation 2.7, which is the percentage of times the system falsely rejects the

enrolled speaker. In these equations, FA is the number of false acceptances, FR is the number of

false rejections and V A is the total verification attempts.

FAR =
FA

V A
(2.6)

FRR =
FR

V A
(2.7)

FAR results from accepting the claim of the non-target speaker while FRR results from declining

the claim of the target speaker. It is typical that improving the FAR, will typically come at the

expense of worsening the FRR and vice versa. Usually, in real applications, ASV systems can be

designed by optimizing for the FAR or the FRR in mind based on the system requirements. For

example, in applications such as banking verification, designers tend to lower the FAR while increas-

ing the FRR, as the consequences of a false acceptance could be dire. While, in applications such

as unlocking the cellphone, designers can lower the FRR while increasing the FAR, as a repeated

authentic user rejection will result in a horrible user experience.
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Figure 2.6: Equal Error Rate (EER)

The most common metric used to assess the ASV performance is the equal error rate (EER),

also referred to as the crossover error rate [49]. The EER is defined as the error rate at the point

when the FAR is equal to the FRR, as shown in Figure 2.6. The use of the EER is very common in

biometric security systems.

ASV is one of these biometric systems that aim at verifying the presence of a certain speaker’s

identity. In these systems false attempts -whether Acceptance or rejection- should be minimal, thus

FAR, FRR, and consequently EER should be ideally zero. Low EER systems are systems that can

perfectly distinguish the enrolled speaker from all other speakers.

For the case of anonymization, the objective is completely reversed. It is actually desired that

the system is able to conceal all of the enrolled speaker identifiable information and replace it with

a pseudo-identity, in a manner that this speaker can’t be identified anymore using an ASV system

enrolled on his voice. Thus, for anonymization systems, the optimal value for EER would be 50%,

indicating that the FAR and FRR both equal 50%, which means complete and equal confusion on

determining/verifying the speaker identity. Thus, the system is as likely to reject an enrolled user

as it is likely to accept an un-enrolled. Any emphasis on FAR or FRR would introduce a bias in the

system, which is a design choice.
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2.1.3.4 ASV Benchmark Dataset

VoxCeleb [42, 50] is an audio-visual dataset consisting of short clips of human speech, extracted

from interview videos uploaded to YouTube. There are 1251 speakers with 153516 utterances in

VoxCeleb 1 and 6112 speakers with over one million utterances in VoxCeleb 2.

The main language of VoxCeleb is English, with 37% of speakers from the USA, the others are

from the UK, France, India, Germany, etc. In VoxCeleb, 61% of speakers are male speakers while

the remaining 39% are female speakers.

2.2 Literature Review on Speech Privacy Preservation

There is limited previous work tackling the problem of speaker anonymization, which motivated the

announcement of a challenge in 2020, The VoicePrivacy Challenge [51], to set an initiative spearhead-

ing efforts to develop privacy preservation solutions for speech technologies. Challenge organizers

developed a baseline system [4] and similar studies emerged as an outcome of the challenge. This

section will start by presenting related work in speech privacy preservation. Afterward, an overview

of the VoicePrivacy challenge baseline and its outcomes will be discussed.

2.2.1 Speech Privacy Techniques

Generally, the techniques for speech privacy preservation fall into four categories: deletion, encryp-

tion, federated learning, and anonymization. Deletion methods [52, 53] are meant for ambient sound

analysis where the need is to guarantee a privacy-aware pipeline. acoustic sensors are often deployed

in urban environments to passively collect data in public spaces. People in such environments may

lack the knowledge of the presence of such sensors, hence their expected privacy might be violated.

The deletion method works by separating the linguistic content and personally identifiable voices

from the rest of the acoustic scene. They delete or perturb any overlapping speech to the point

where no information about it can be recovered.

Encryption methods [1, 54, 55, 56], support computation upon data in the encrypted domain.

They convert speech data into an unreadable format that can only be viewed with access to a private

key. These approaches trade off efficiency for privacy, resulting in varying overheads of computa-

tion, communication, and rounds of interaction. They are also specific to the given application and

challenging to integrate with existing systems. As such, cryptographic solutions can be relatively

inflexible, unmanageable, and can only be built by specialists.
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The idea of federated learning is to collaboratively train a neural network on a server. Each user

receives the current weights of the network and in turn, sends parameter updates (gradients) based

on local data. This protocol has been designed not only to train neural networks data-efficiently

but also to provide privacy benefits for users, as their input data remains on the device and only

gradients parameters are shared as in [57]. The derived data used for learning may still leak infor-

mation about the original data. In [58] they prove that any input to a fully connected layer can be

reconstructed analytically independent of the remaining architecture.

Speaker anonymization differs from speech anonymization in that the former suppresses speaker

identity while the latter conceals linguistic content.

Speaker anonymization can be done either physically or logically. While physical anonymization

aims to perturb speech in physical space by adding an external sound to the original waveform [59],

logical anonymization suppresses the speaker identity. Past and recent attempts have focused on

noise addition, speech transformation [60], voice conversion [61, 62, 63], speech synthesis [4, 64], or

adversarial learning [65].

In [61], a voice transformation (VT) system is presented. It aims to change the speaker identity

into another special speaker. Similarly, the approach in [63] utilized a convolutional neural network

(CNN) as a VT function and averaged different transformation results to anonymize speech.

In [66] and [62], they improved the convenience of the VT-based method to enable j user to

select an approximate transformation from a pool of pretrained VT models for speaker anonymiza-

tion. Justin et al. [67] performed speaker anonymization by first recognizing the diphones in the

input speech using an ASR system and then synthesizing speech from the recognized diphone se-

quence. The synthesized speech differs from the original one in terms of speaker identity because

the synthesizer is speaker-dependent and was trained using the data of a different speaker.

With a goal closely related to that of anonymization, Alegre et al. [68] investigated the so-called

speaker evasion and hiding using voice conversion techniques. With the work aiming only to avoid

surveillance systems, it evaluated only how the approach could degrade ASV performance. It did

not consider degradation to speech quality. In contrast, our proposed system will be evaluated in

terms of speaker identity anonymization, speech quality, and linguistic content.
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2.2.2 The VoicePrivacy Challenge

The VoicePrivacy challenge, part of Interspeech 2020 special sessions and challenges, is an initiative

to spread the efforts towards developing privacy preservation solutions for speech technology. It aims

to gather a new community to define the task and metrics and to benchmark initial solutions using

the first common datasets and protocols. It takes the form of a competitive challenge. Challenge

participants are required to process a dataset of speech signals in order to anonymize them while

protecting the linguistic content and speech naturalness. The challenge ran from early 2020 and

concluded with a special session held in conjunction with Interspeech 2020.

The main objective of the VoicePrivacy challenge is to encourage progress in the development of

anonymization techniques for speech data. The specific technical goals as shared in the challenge

evaluation plan [5], are summarized as follows:

• Develop novel techniques to suppress speaker-discriminative information within speech signals.

• Promotes effective anonymization techniques while protecting intelligibility and naturalness;

• Provide benchmarking techniques to facilitate the comparison of different anonymization so-

lutions using a common dataset and protocol;

• Investigate metrics for the evaluation and meaningful comparison of different anonymization

solutions.

The anonymization method in [4], shown in Figure 2.7, comprises of three steps: (1) extraction

of x-vector [48], pitch (F0) and bottleneck (BN) features; (2) x-vector anonymization; (3) speech

synthesis (SS) from the anonymized x-vector and the original F0 and BN features. The baseline is

designed under the assumption that the information in a speech waveform can be classified into two

groups: one group mainly encodes the speech content such as the sequence of phonemes, while the

other group captures the acoustic features invariant to the speech content, i.e., the speaker identity.

Therefore, a speech waveform can be anonymized by altering the features that encode the speaker

identity only.
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Figure 2.7: Speaker Anonymization Pipeline [4]

The system first extracts an x-vector, a phoneme posteriogram (PPG), and fundamental fre-

quency (F0) from the input waveform. It then anonymizes the x-vector on the basis of a pool of

x-vectors of external speakers. An x-vector is composed based on a similarity score s. The distance

measure can be either PLDA distance or cosine distance. The final x-vector can be calculated by

averaging a set of candidate x-vectors for which the similarity to the original speaker is in the range

[s − ε , s + ε], where ε > 0 is a hyper-parameter used to control the width of the range (denoted

as ”nearest” or ”farthest”). Finally, it uses an acoustic model and a neural waveform model to

synthesize the speech waveform using the anonymized x-vector and the original PPG and F0.

The system in [4] suffers from inaccurate phoneme posteriogram representations which provide

poor linguistic depictions as well as high WERs for largely distant anonymized x-vectors. This in-

dicates that when x-vectors are averaged over very different unseen speakers, the system is unable

to correctly recover the original linguistic contents of the input speech.

Two relevant studies emerged as an outcome of the VoicePrivacy Challenge in [69] and [70]. Both

of them are based on the baseline system presented in 2.2.1. Turner et.al [69] proposed a distribution-

preserving voice anonymization technique. Starting from an observation on the baseline in which

the anonymized x-vectors are similar to each other due to averaging, hence losing much information,

the proposed a new method to generate fake x-vectors which tackle these issues by approximating

the original distribution of x-vectors and their intra-similarities. Using their generative model, they

got rid of the pool and use the rest of the baseline components to produce anonymized speech.

Their method can be summarized as follows: they applied PCA on x-vectors obtained from a
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large dataset, thus reduced the space of the vectors in order to sample from it, then fitted a genera-

tive model, i.e. GMM, to generate reduced-dimensional x-vectors that could be brought back to the

512-dimensional space by applying inverse PCA transform.

When an utterance needs to be anonymized, the GMM is randomly sampled to produce a fake

x-vector. To mitigate the risk of the fake speaker being close to the original one, an optional forced

dissimilarity measure is used to ensure the distance between the two x-vectors is above a certain

threshold.

Reported results on EER show heavy alternation in values, being sometimes better than the

baseline and other times worst. It is fair to note that all EER values fall within an acceptable range

indicating the difference in identities before and after anonymization. However, WER results on all

test sets are higher than the baseline measures, indicating further degradation in the preservation

of linguistic content.

Champion et. al [70] modifies the baseline by including fo in the anonymization process. They

analyzed the impact of this modification across gender and found that it can always improve the

anonymization process.

They modified fo using the following linear transformation:

F = µy +
σy
σx

(xt − µx) (2.8)

where F represents the log-scaled fo of the source speaker at the frame t, µx and σx represent the

mean and standard deviation for the source speaker. µy and σyrepresents the mean and standard

deviation of the log-scaled fo for the pseudo-speaker.



Chapter 3

The Proposed Speaker

Anonymization Model

A typical speaker anonymization system outputs a speech waveform while hiding all personally iden-

tifiable information and maintaining naturalness and linguistic content. The baseline system relied

on a pool of x-vectors of external speakers to sample from and create a new x-vector. In this thesis,

an alternative anonymization approach is proposed through the development of a generative adver-

sarial network (GAN) that is able to generate plausible x-vectors. In this chapter, a comprehensive

discussion on GANs is provided, then the design of the proposed system which uses different GAN

alternatives in the generation of x-vectors is presented.

3.1 Generative Adversarial Networks

Discriminative models usually map high-dimensional rich sensory input to a class label [71, 72]. Such

models are primarily based on the backpropagation and dropout algorithms, using piece-wise linear

units [73, 74, 75] which have a particularly well-behaved gradient. Whereas deep generative models

try to model the distribution of the training data.

A GAN [76] is a class of machine learning frameworks where two neural networks; the generative

network and the discriminative network, compete against each other in a game. Figure 3.1 shows

the general structures of GANs. The generative network generates candidates while the discrim-

inative network evaluates them. The contest operates in terms of data distributions. Typically,

the generative network learns to map from a latent space to a data distribution of interest, while

the discriminative network distinguishes candidates produced by the generator from the true data

22
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distribution. The objective of the training in generative networks to increase the error rate of the

discriminative network i.e., ”fool” the discriminator network by producing fake candidates which

look similar to the real samples.

Figure 3.1: Generative Adversarial Network Architecture

A known dataset serves as the initial training data for the discriminator. Training the discrim-

inator involves presenting it with samples from the training dataset until it achieves acceptable

accuracy. The generator is trained to fool the discriminator. Typically, the generator is seeded with

randomized input that is sampled from a predefined latent space (e.g., a multivariate normal dis-

tribution). Thereafter, candidates synthesized by the generator are evaluated by the discriminator.

Backpropagation is applied in both networks so that the generator produces better samples, while

the discriminator becomes more skilled at flagging synthetic samples.

Many GAN designs have been proposed in the literature. Each design is tuned to meet certain

application requirements. As compared to the rich GAN literature in generating images (human

faces and animals), this thesis is concerned with the investigation of generating audible human voices.

The idea of a generative adversarial network was first introduced in 2014, where the authors of

[76] proposed a new framework for estimating generative models via an adversarial process. In this
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framework, they train two models simultaneously; a generator model G that captures the distribu-

tion of the data and a discriminator model D that estimates the probability that a sample belongs

to the training data rather than the generated data.

The purpose of the training scheme for G is to maximize the probability of D making a mistake.

This framework corresponds to a minimax two-player game. A minimax game is a decision rule

used for minimizing the possible loss for a worst-case (maximum loss) scenario or maximizing the

minimum gain. The authors defined G and D by multi-layer perceptrons where the entire system

can be trained with backpropagation.

As highlighted in Figure 3.1, the generative model competes against the discriminative model.

The former tries to mimic the training data by learning its distribution while the latter learns to

determine whether a sample is from the model distribution or the data distribution. Competition

in this game drives both models to improve their methods until the generated fake samples are

indistinguishable from the real samples.

To learn the generator’s distribution pg over data x, a prior on input noise variables pz(z) is

defined, then a mapping is represented to data space as G(z; θg), where G is a differentiable function

represented by a multilayer perceptron with parameters θg. A second multilayer perceptron D(x;

θd) that outputs a single scalar was defined. D(x) represents the probability that x came from the

data rather than pg. We train D to maximize the probability of assigning the correct label to both

training examples and samples from G. We simultaneously train G to minimize log(1 D(G(z))).

Typically, D and G will compete against each other following the value function V (G,D):

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (3.1)

The training scheme for a GAN takes place in an alternating manner; where we alternate between

k steps of optimizing D and one step of optimizing G.

Goodfellow et al. [76] showed that, for a fixed generator, there is a unique optimal discriminator:

D∗(x) =
pdata(x)

pdata(x) + pg(x)
(3.2)

where pdata is the PDF of the training data and pg(x) is the PDF of the generated data.

They also showed that the generator, G, is optimal when pg (x) =pdata (x), which is equivalent to

the optimal discriminator predicting 0.5 for all samples drawn from x. In other words, the generator

is optimal when the discriminator cannot distinguish real samples from fake ones.
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Despite the theoretical existence of unique solutions, GAN training is challenging and often

unstable for several reasons [77, 78, 79]. These challenges include:

• Convergence difficulties, where the point of equilibrium between discriminator and generator

is not found. A straightforward indication of this is the discriminator loss approaching zero.

This mode is usually caused by the generator generating corrupted data that can be easily

classified into fake by the discriminator [77].

• Mode collapse, which is the case when the generator gets stuck in producing similar samples

for different inputs [78].

• Vanishing gradients in the discriminator network, providing no reliable path for gradient up-

dates to the generator [79].

This GAN design, also known as vanilla GAN, was benchmarked on relatively simple image data

sets: MNIST (handwritten digits), CIFAR-10 (natural images), and the Toronto Face Data Set

(TFD).

Followed that, a work introduced in [80] called conditional GAN (CGAN) where conditioning

ability is added to the GAN. Typically, the conditioning happens in the form of a label fed to both

generator and discriminator. As compared to equation (3.1), the objective function in a CGAN is:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x | y)] + Ez∼pz(z)[log(1−D(G(z | y)))] (3.3)

The Wasserstein Generative Adversarial Network (WGAN) [81], is an extension to the genera-

tive adversarial network, introduced in 2017. This GAN type improves the training stability and

provides a loss function that correlates with the quality of generated images. It is an important

extension to the GAN model and requires a conceptual shift away from a discriminator that predicts

the probability of a generated image being “real” and toward the idea of a critic model that scores

the “realness” of a given image. This conceptual shift is motivated mathematically using the earth

mover distance, or Wasserstein distance, to train the GAN that measures the distance between the

data distribution observed in the training dataset and the distribution observed in the generated

examples.

In 2019, a study on modeling the PDF of rows in a tabular took place in [82], named conditional

tabular GAN (CTGAN). The study discussed the difficulties in modeling tabular data, such as

the mixture of discrete and continuous columns, and continuous columns may have multiple modes

whereas discrete columns are sometimes imbalanced making the modeling difficult.
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The authors introduced several new techniques to mitigate those difficulties. Techniques in-

cluded: augmenting the training procedure with mode-specific normalization, architectural changes,

and addressing data imbalance by employing a conditional generator and training-by-sampling.

Several unique properties of tabular data are handled in the CTGAN design. Such properties

include the presence of mixed data types, non-gaussian distributions, and multimodal distributions.

Authors of [82] used mode-specific normalization to overcome the non-Gaussian and multimodal

distribution and designed a conditional generator and training-by-sampling to deal with the imbal-

anced discrete columns.

In this work, while the x-vectors are considered to be continuous numerical vectors that don’t

contain mixed data types nor multimodal distribution, it is a non-gaussian distribution, which means

that its values are not bounded by [-1,1] and we can’t use tanh function in the last layer of the net-

work because that will lead to a vanishing gradient problem.

3.2 Anonymization Component Design

In this section, a comprehensive overview of the proposed anonymization module is presented. First,

the motivation behind using a generative model is explained. Next, the process of selecting a suitable

generative model design is discussed.

3.2.1 System Architecture

In the baseline discussed in Section 2.2.2, the system relied on a pool of original speaker identities,

i.e. x-vectors, and applied some distancing and averaging techniques to create a pseudo-identity to

anonymize the input utterance. Such a technique poses a serious risk of using an already existing

human identity in the anonymization process or an identity close to it. This may protect the privacy

of one user at the expense of violating the privacy of another user as the pool is comprised of real

human identities.

This motivated the addition of another level of anonymity by using a GAN for generating x-

vectors for the pool as shown in Figure 3.2. A GAN that is able to infer pseudo identities that are

natural yet unique and irreversible as the network will be optimized for minimizing the difference

between the real and the fake x-vectors.
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Figure 3.2: Proposed Anonymization System Design

The system in Figure 3.2 performs anonymization in three main steps:

1. Feature Extraction: extract the speaker x-vector, the fundamental frequency (F0) and

bottleneck (BN) features from the original audio waveform.

2. Speaker Anonymization: anonymize the x-vector of the source speaker using an external

pool of speakers. In this work, this pool is created using a generative model, as opposed to

the baseline in [4] which uses libriTTS corpus to construct the pool.

3. Speech Synthesis: synthesize the speech waveform from the anonymized x-vector.

The proposed generative model is trained to generate x-vectors. As discussed in section 2.1.3.2,

an x-vector is a 512-dimensional vector that represents the speaker’s identity in speech. A classi-

fication model is trained on a dataset of different speakers with the final goal being to predict the

speaker identity. Raw input speech is processed to obtain 30-dimensional MFCCSs with a frame

length of 25ms, mean-normalized over a sliding window of up to 3 seconds. A speech activity detec-

tion model SAD is used to filter out nonspeech frames. A time-delay neural network is trained to

predict the speaker identity given an input speech.
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The network is trained to classify the N speakers in the training data. A training example con-

sists of a chunk of speech features (about 3 seconds average), and the corresponding speaker label.

After training, embeddings are extracted from layer segment6. Excluding the SoftMax output layer

and segment7 (because they are not needed after training) there is a total of 4.2 million parameters.

In this work, a pre-trained model that is part of Kaldi speech recognition toolkit [83] was used for

x-vector extraction.

3.2.2 GAN Selection

Four GAN types are considered in this work; vanilla GAN, CGAN, WGAN, and CTGAN. The first

three are the most popular GAN designs in the image domain and the latter is a choice suitable for

tabular data; x-vector in our case. Table 3.1 presents the architecture and hyperparameters used in

implementing each of the four GAN designs.

The methodology adopted in designing the architecture for GAN, CGAN, and WGAN is to

reflect the network behavior from the image domain to deal with a 512-dimensional vector, doing

all necessary changes in network size, activation functions, and layers type. For instance, a con-

volutional network was an overkill for the task and caused an unstable GAN training, causing the

discriminator to dominate the generator quickly. The choice of a fully connected dense layer came

as a simplification attempt to the network, as it is supposed to model the distribution of vectorized

data that is generated by another neural network, i.e. x-vectors, thus are considered structured data.

Unlike images, x-vectors don’t have strong spatial dependencies, and unlike time-series waveforms,

x-vectors are not sequential data.

Each of these networks is to be trained to generate a pool of anonymous x-vectors that will re-

place the real pool of x-vectors in the baseline. Grid search was performed and the best parameters

were chosen and presented in 3.1. The network with the best performance in terms of generalization

ability is to be adopted. Quality assessment through a number of metrics and experimental results

are provided in Chapter 4.
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Table 3.1: The Four GAN Designs’ Architectures and Hyperparameters

Model Generator Discriminator Batch Epoch

GAN

Dense(128,activation=’relu’)

BatchNormalization

Dense(512,activation=’relu’)

BatchNormalization

Dense(512,activation=’relu’)

BatchNormalization

Dense(1,activation=’relu’)

BatchNormalization

Dense(1,activation=’sigmoid’)

128 30000

WGAN

Dense(512,activation=’relu’)

Dense(256,activation=’relu’)

Dense(512,activation=’relu’)

BatchNormalization

Dense(512,activation=’relu’)

Dense(128,activation=’relu’)

Dense(1)

128 30000

CGAN

Dense(256,)

LeakyReLU(alpha=0.2)

BatchNormalization()

Dense(512)

LeakyReLU(alpha=0.2)

BatchNormalization

Dense(512,)

LeakyReLU(alpha=0.2)

Dense(1)

500 20000

CTGAN

Dense(256,)

LeakyReLU(alpha=0.2)

BatchNormalization

Dense(256,)

LeakyReLU(alpha=0.2)

BatchNormalization

Dense(512,activation=’tanh’)

Dense(512,activation=’gumble’)

Dense(512,activation=’gumble’)

Dense(256,)

LeakyReLU(alpha=0.2)

Dropout

Dense(256,)

LeakyReLU(alpha=0.2)

Dropout

Dense(1)

100 1000



Chapter 4

Results and Discussion

In this chapter, different variations of generative adversarial networks are investigated. Evaluation

is based on four metrics, each of which assesses one of the desired design outcomes. The environ-

ment setup that is used to execute all experiments is first presented. Then, the experimental results

for evaluating both the generative models and the anonymization quality are presented and discussed.

4.1 Experimental Setup

Experiments were performed on a Lenovo IdeaPad L340 Gaming 9Gen Intel Core i7 4.5GHz 12M

Cash 6-Cores, 8GB RAM, 256GB SSD +1 TB HDD, Nvidia GTX 1650 4GB, and Ubuntu 20.04

operating system.

All experiments were based on the challenge publicly available baseline [4]. Software packages

involved: Python 3.6 for training the GAN models, Kaldi toolkit [83] for the pre-trained models.

The GAN, CGAN, and WGAN were implemented using Keras python framework, whereas the CT-

GAN was implemented using PyTorch framework. The training, development and evaluation sets

are those discussed in Section 4.3. The pool of external speakers on which x-vectors are computed

to train the GAN model is LibriTTS train-other-500 and VoxCeleb1,2. Additional information on

the number of speakers and the gender distributions can be found in Table 4.2.

4.2 Evaluation Methods

The performance of the proposed anonymization system is evaluated using four different measures;

cross-cosine similarity distribution, Kolmogorov-Smirnov (KS) score, EER, and WER. The first two

30
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metrics are used to evaluate the quality of x-vectors generated by the GAN while the latter two

are for evaluating the speaker anonymization quality. In the following two subsections, we will first

discuss cross-cosine similarity distribution as a metric and KS scores for different GAN designs, then

we will discuss EER and WER measures after anonymization took place.

4.2.1 Generative Model Evaluation

As discussed in Chapter 3, the literature on GAN design is very rich, containing tens of GAN types

each tailored to a specific application. Very few studies tackled the use of GANs in speech as opposed

to the enormous number of research that took place in images. This fact set an uncharted territory

for us to explore in many aspects. First, designing a GAN that converges for the task of generating

speaker identities i.e. x-vectors which are 512-dimensional vectors, and second, evaluating the gen-

eration quality of such raw embeddings.

GAN evaluation is often challenging. This challenge comes from the fact that, unlike other deep

neural networks (DNN) models that are trained with a loss function until convergence, a GAN gener-

ator is trained through the feedback given from another model, the discriminator, that is trained to

classify fake from real data samples. The generator and discriminator models are trained together in

an alternating and dependent manner. As a result of this, there is no formal objective loss function

used to train the generator and therefore, no objective way to monitor the progress of the training

and the quality of the generated data.

In the case of image-based GANs, the most straightforward and revealing inspection method

would be to directly evaluate the resulting images, while in our case, that’s quite not possible. The

nature of x-vectors is a DNN-based embedding vector that has certain numerical bounds, never-

theless can’t be judged unless incorporated with some phonetic content and synthesized back to an

audible waveform to be heard and judged. That’s obviously a very complex approach and time-

consuming for evaluating a generative model and an approach that involves a number of cascaded

models, which means the possibility of introducing a cascaded error that will compromise the whole

evaluation process.

On top of that, one of the most common problems in training a GAN is mode collapse, where

the generator gets stuck in producing one or a few distinct samples rather than capturing the whole

data distribution of the training data and producing diverse samples within that distribution. This

usually happens due to the discriminator failing in giving proper feedback on the spread of the gen-

erated images, as a result of the basic loss function used in the original GAN [76] that was enhanced

in later GAN designs.
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Based on the nature of the x-vectors and the desired objective from the GAN generator, we

evaluated each GAN design based on two metrics to assess the generation quality. Cross-Cosine

Similarity and KS statistic score.

The cross cosine similarity, defined as :

cos(θ) =

∑
(aibi)√∑
a2i
√∑

b2i
(4.1)

where a and b are two vectors, was used to assess the presence of mode collapse and to examine

the nature of the generated samples’ distribution as opposed to the real samples where the cross-

cosine similarity measure was computed among different x-vector samples. Generated/real data is

shuffled, and cross cosine distance is calculated between pairs of samples to formulate a distribution

of similarity among the data. A distribution centered above 0.9 (number derived from experimenting

on LibriSpeech random subset, evaluating the cosine distance for the same speaker x-vector in dif-

ferent acoustic condition, similarity above 90% indicated the same speaker identity) would indicate

that most samples are similar to each other i.e. represent quite the same speaker, which would be

a result of the GAN entering a mode collapse. We used this metric to rule out GAN designs that

suffer from mode collapse. For anonymization purposes, this would mean producing few distinct

speaker identities (x-vectors).

The choice of using the Cosine distance instead of the Euclidean distance is influenced by the

high dimensionality of the data; each x-vectors is compromised of 512 values. The cosine distance

measures the orientation between two vectors, while the Euclidean distance measures the direct

distance between the end of the two vectors. For high dimensional data, cosine similarity reveals

better similarity insights. This is in addition to being a bounded value, which facilitates the analysis.

On the other hand, the KS statistic score is used to determine how close two distributions are to

each other, in this work, the fake distribution is to the real one. This metric is computed for each

GAN design as well. GANs with greater KS score are the ones which didn’t converge to the objective

of modeling the distribution of real data i.e. their synthesized identities doesn’t follow the distri-

bution of the real identities, thus are ruled out from the possible candidates to use in anonymization.

4.2.2 Speaker Anonymization Evaluation

To assess the quality of anonymization, two systems are used; ASV and ASR. These systems are used

for evaluation purposes in this thesis, hence the referred to as ASVeval and ASReval, respectively).
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As discussed in 2.1.2 and 2.1.3, ASV is the process of authenticating individuals through speech

and ASR is the process of transcribing time-based speech waveforms into textual format. These are

considered objective privacy metrics to assess speaker re-identification and linkability in addition to

preserving the linguistic content.

Suppose a speaker has been enrolled in the ASVeval system i.e. the system recognizes him through

identifying his unique voice footprint. Ideally, the anonymized speech of the speaker will be ‘falsely’

rejected by the ASVeval system. By calculating how the rejection rates rise over multiple speakers,

we evaluated how well the proposed system anonymized the speech waveforms. We used the ASReval

system to recognize the word sequences from the original and anonymized speech. It is assumed that

the smaller the difference between the word sequences, the better the preservation of the linguistic

contents. We used the EER to measure anonymization performance and the WER to investigate

how well the content was preserved in the anonymized speech [5].

An alternative performance measure to EER is the log-likelihood-ratio cost function (Cllr), pro-

posed in [12] as an application-independent evaluation objective. Cllr can be decomposed into a

discrimination loss (C llr
min) (how good are two classes separated for any threshold) and a calibra-

tion loss (Cllr − C llr
min) which represents LLRs in the case of Cllr being less than 1.

The speaker verifiability metrics, based on the ASVeval which produces log-likelihood ratio (LLR)

scores, are applied as follows:

1. Compute PLDA (LLR) scores for (a) clean enrollment data and (b) anonymized trial data;

2. Compute PLDA (LLR) scores for (a) anonymized enrollment data and (b) anonymized trial

data;

3. For steps 1 and 2, calculate equal error rate (EER) and log-likelihood-ratio cost function (Cllr)

[84].

As stated by the challenge in their baseline [4] work, the x-vector-PLDA-based ASVeval [85], as

implemented in Kaldi speech recognition toolkit [83], was trained on the VoxCeleb dataset and then

adapted to the VCTK domain using 2580 utterances from 20 unused speakers in the VCTK corpus.

Finally, the ASReval module was DeepSpeech [86] pre-trained on external clean data.

Experiments were conducted on the GANs that showed plausible results in the first two metrics.

Despite the fact that the GAN can produce an infinite amount of data, We randomly sampled (1k,

3k, and 5k) samples from each GAN to form the pool in an attempt to study the effect of the pool

size on the anonymization quality.
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The method of identity selection is the same as in [4], where an x-vector is composed based on a

similarity score. The distance measure can be either PLDA distance or cosine distance. An experi-

ment was conducted on changing the distance choice to study its effect on the anonymization process.

4.3 Data Preprocessing

A number of publicly available datasets are used for training, development, and evaluation of speaker

anonymization systems. They are comprised of subsets from the following corpora:

• LibriSpeech [37] is an English speech corpus derived from audiobooks and designed for ASR

research. It consists of approximately 1,000 hours of speech sampled at 16 kHz.

• VCTK [38] is an English speech corpus of 109 native speakers with various accents. It contains

about 44 hours of speech sampled at 48 kHz.

• LibriTTS [87] is an English speech corpus derived from the original LibriSpeech corpus and

designed for TTS. It contains approximately 585 hours sampled at 24 kHz.

• VoxCeleb-1,2 [42, 50] is an audiovisual corpus extracted from videos uploaded to YouTube

and designed for speaker verification research. It contains about 2,770 hours of speech (16

kHz) from about 7,360 speakers, covering a wide range of accents and languages.

A detailed description of the data used for training, development, and evaluation is given in the

following subsections.

4.3.1 Training Data

This anonymization system was built using five different models, where we only trained the GAN

model and used the rest of the models as pre-trained models. Details for training these components

are presented in Table 4.1.
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Table 4.2: Statistics of the Training Datasets of the x-vector Anonymization Model.

Subset Size (hr) Number of Speakers Number of Utterances
Female Male All

VoxCeleb-1,2 2,794 2,912 4,451 7,363 1,281,762
LibriTTS train-other-500 310 560 600 1,160 205,044

Table 4.1: Anonymization System: Model Description and Training Corpora.

# Model Architecture Input Output Training Data

1 ASR AM TDNN-F 7

TDNN-F hidden layers

softmax: 6032 triphone ids

LF-MMI and CE criteria

MFCC40

+

i−vectors100

BN256

features

Librispeech:

train-clean-100

train-other-500

2 X-vector

Extractor

TDNN

7 hidden layers + 1 stats

pooling layer

7232 speaker ids

CE criterion

MFCC30 Speaker

x −
vectors512

VoxCeleb: 1, 2

3 Speech

Synthesis

AM

Autoregressive (AR) network

FF * 2 + BLSTM + AR +

LSTM * 2 + highway-postnet

MSE criterion

F01 +

BN256 + x−
vectors512

Mel −
filterbanks80

LibriTTS:

train-clean-100

4 NSF

model

sinc1-h-NSF in [88]

STFT criterion

F01 +Mel−
fbanks80 +

x −
vectors512

speech

waveform

LibriTTS:

train-clean-100

5 X-vector

GAN

Conditional Tabular

Generative Adversarial Net-

work CTGAN

Noise −
V ector100

Pool of

speaker

x-vectors

LibriTTS-train-

other-500

VoxCeleb1,2

Vox-Celeb1,2 & LibriTTS train-other-100 corpora were used to train our anonymization model,

i.e. GAN model. A more detailed description of the data is provided in Table 4.2.
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4.3.2 Development Data

Development data also called the holdout set or validation set, is usually used to evaluate different

model designs and tune the hyperparameters for the best values before the final and formal evalua-

tion on the testing set.

As stated by the challenge organizers in their evaluation plan [5], anonymized utterances are

referred to as trial utterances, while enrollment utterances are several utterances for each speaker,

which may or may not have been anonymized. The attacker is assumed to have access to various

amounts of data; one or more trial utterances and possibly, several enrollment utterances for each

speaker. The attacker has no access to the anonymization system though.

The level of protection of personally identifiable information is assessed through a range of pri-

vacy metrics that include objective speaker verifiability metrics that assume the following attack

scenario: the attacker has access to a single anonymized trial utterance and several enrollment

utterances. Two sets of metrics will be computed, corresponding to the two situations when the

enrollment utterances are cleanly anonymized. In the latter case, it is assumed that utterances have

been anonymized in the same way as the trial data using the same anonymization system, i.e., all

enrollment utterances from a given speaker are converted into the same pseudo-speaker, and enroll-

ment utterances from different speakers are converted into different pseudo-speakers. The validation

set is split into a trial subset and an enrollment subset.

Table 4.3 highlights some details about the validation datasets. For the LibriSpeech-dev-clean

dataset, the speakers in the enrollment set are a subset of those in the trial set. For the VCTK-dev

dataset, two subsets were created of trial utterances, denoted as common part and different part.

Both include trials from the same set of speakers but from disjoint subsets of utterances. The com-

mon part of the trials is composed of utterances # 1 − 24 in the VCTK corpus, which is identical

for all speakers: the elicitation paragraph6 (utterances # 1 − 5) and rainbow passage7 (utterances

# 6 − 24). The enrollment subset and the different parts of the trials are composed of distinct

utterances for all speakers (utterances with indexes ≥ 25).
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Table 4.3: Statistics of the Validation Datasets [5].

Dataset Subset Female Male Total

Librispeech: dev-clean

Speakers in enrollment 15 14 29

Speakers in trials 20 20 40

Enrollment utterances 167 176 343

Trial utterances 1,018 960 1,978

VCTK-dev

Speakers (same in enrollment and trials) 15 15 30

Enrollment utterances 300 300 600

Trial utterances (common part) 344 351 695

Trial utterances (different part) 5,422 5,255 10,677

4.3.3 Evaluation Data

Similar to the development data, the test subsets from two different corpora (LibriSpeech and VCTK

) are used for evaluation. Those datasets are split into enrollment and trial subsets as summarized

in Table 4.4.

Table 4.4: Statistics of the Test Datasets [5].

Dataset Subset Female Male Total

Librispeech: test-clean

Speakers in enrollment 16 13 29

Speakers in trials 20 20 40

Enrollment utterances 254 184 438

Trial utterances 734 762 1496

VCTK-test

Speakers (same in enrollment and trials) 15 15 30

Enrollment utterances 300 300 600

Trial utterances (common part) 346 354 700

Trial utterances (different part) 5,328 5,420 10,748

4.4 Experimental Results

This section outlines evaluation results and discussion for the evaluation methods discussed in 4.2

on the datasets specified in 4.3. Exact results are available in Appendix A.
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4.4.1 Generative Model Evaluation Results

Figure 4.1 shows the KS results for the different types of GANs and genders. The KS metric

measures the approximate distance between the fake data Probability Distribution Function (PDF)

and the real data PDF. The results rule out the CGAN as there is high similarity between the fake

and original distributions. However, the KS values are are inconclusive for the GAN, WGAN, and

CTGAN.

Figure 4.1: KS Test for Each GAN Design Generated Data Against Real Data for Each Gender.

Accordingly, the cross-cosine similarity measure was used to further assess the diversity of the

generated x-vectors by computing the cosine similarity between x-vector pairs. Figure 4.2 compares

the cross-similarity distribution for the four different GAN designs. When compared to the distri-

bution of the original data for both males and females, shown in Figure 4.2, the x-vectors generated

by the vanilla GAN appears to have a slightly similar distribution but with some undesired density

above 0.8. On the other hand, the CTGAN’s data distribution is good enough to indicate diverse

identities. While in the case of a WGAN and CGAN they show a dominating state of mode collapse.

Hence, this leaves the GAN and CTGAN as potential candidates that learned the PDF of real

x-vectors. In the next section, the anonymization performance of these two models is performed.
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Figure 4.2: Cross-Cosine Similarity Distribution for Four GAN Designs (CTGAN, CGAN, GAN,
WGAN) Against the Original Data.
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4.4.2 Speaker Anonymization Evaluation Results

In this section, the results of several experiments are presented. These include the anonymization

performance of the GAN and CTGAN when varying the pool size and the distance measure. In

addition, the proposed anonymization system is compared against two other anonymization systems.

4.4.2.1 GAN Pool Evaluation

Figure 4.3 and Table 4.5 show the anonymization evaluation results for the GAN-generated pool.

The Pool size here is 1k. While ASV evaluation results are generally comparable to the baseline and

CTGAN and worse in some test sets, the WER results are extremely high. Effectively, more than

90% of the transcribed anonymization utterance is wrong compared to the same non-anonymized

utterance. This indicates the poor quality of the anonymized waveform and the failure to maintain

the linguistic content.

Note that a language model LM is a probability distribution over sequences of words. It is trained

on a large text corpora. A probability distribution is learned over the proper sequencing of words

in a spoken language. The LM is used to enhance the output of the ASR models by correcting

its mistakes according to the LM’s learned contextual probability of the language. The size of the

corpora used to train the LM highly contributes to the accuracy of the model. In this work, we use

two models small and large to refer to the LM corpora size.

In addition to this, a subjective evaluation through listening to a large subset of the anonymized

utterances using the GAN-pool revealed significant corruption in the anonymized voice with a bee-

like nature. This contradicts with the objective of anonymization in which it is required to produce

a human-like voice. Based on this, the use of vanilla GAN for x-vector generation is dropped at this

stage and no further experiments using it were conducted.
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Figure 4.3: GAN-generated Pool: EER (%) Score Obtained by the ASV Evaluation System on
Multiple Test Sets. The Cllr Score is Displayed on the Top of Each Bar. o–original, a–anonymized

Speech Data for Enrollment and Trial Parts.

Table 4.5: GAN-generated pool: ASR results for development data.

# Data set Data WER, %, small WER, %, large

1 libri dev a 91.03 90.23

2 vctk dev a 91.44 90.53

4.4.2.2 CTGAN Pool Evaluation

In this experiment, the effect of varying the pool size of speaker identities in the anonymization

process is studied. Results are reported for Speaker verifiability/linkability metrics and WER for

various pool sizes (1000,3000,5000), for both genders, and on multiple development and test datasets.

In Figure 4.4 and Figure 4.5, a steady performance is observed over various pool sizes across

multiple datasets. This indicates that the speaker verifiability metrics don’t depend on the size of

the anonymization pool. It is also noticed that EER and Cllr values are lower in the case of (a-a), i.e.

both utterances are anonymized. This is a result of the anonymization projecting the utterances to

relatively similar speaker identities. In Figure 4.6, it can be noticed that there is minimal difference

in WER values due to varying the pool size. It can be noticed that in the case of large LM, WER

tends to be better as the larger LM contributes more to correcting the ASR output mistakes. As a

result of the varying pool size experiment, we used the smaller pool size throughout the rest of the

experiments to shrink the size of the whole anonymization system.
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Figure 4.4: ASV Results for CTGAN-generated Pool on Development Sets. The Cllr Score is
Displayed on the Top of Each Bar.
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Figure 4.5: ASV Results for CTGAN-generated Pool on Test Sets. The Cllr Score is Displayed on
the Top of Each Bar.
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Figure 4.6: ASR results for CTGAN-generated pool with different Pool sizes. Small/Large refer to
the language model size.

As discussed earlier, the x-vector selection process from the pool relies on calculating a distance

measure, which could be PLDA distance or Cosine. The following experiment compares both dis-

tance measures to study the effect on anonymization performance. Results presented in Figure 4.7,

Figure 4.8 and Figure 4.9 show comparable performance, where the average of EER values over all

datasets for the PLDA case is 42.2, and 43.03 for the cosine case. Whereas the average Cllr scores

for PLDA is 96.47 as compared to 95.1 for cosine.
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Figure 4.7: ASV Results for Development Partition for PLDA and Cosine Distances. The Cllr

Score is Displayed on the Top of Each Bar.
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Figure 4.8: ASV Results for Test Partition for PLDA and Cosine Distances. The Cllr Score is
Displayed on the Top of Each Bar.
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Figure 4.9: ASR results for both development and test data for PLDA and Cosine distances.
Small/Large refer to the language model size.

4.4.3 Comparison with Previous Work

In this section, the performance of the proposed anonymization system is compared with the baseline

anonymization system [4] and the enhanced system proposed in [69] which uses Gaussian Mixture

Models to generate the x-vectors pool.

Figure 4.10 shows the values of the ASV metrics for the three systems. All the alternating values

for ASV are within the acceptable range for hiding the speaker identities. A typical ASV system has

WER less than 2, indicating that the false acceptance and false rejection rates are below 2, which

matches the objective of a general ASV system. However, in the anonymization case, values around

50% indicate that 50% of the times the systems miss-identifies a given speaker as another one as if

it’s tossing a coin, indicating that the ASV system is actually fooled and the two compared speakers

are totally different from each other, which is the exact goal of anonymization. The Cmin
llr repre-

sents how well are two classes separated from each other, which is also comparable among the three

studies with all values falling within a range consistent with the anonymization objective (above 0.8).

In Figure 4.11, we compare WER and show that our proposed anonymization system achieves

state of the art performance. The proposed solution can better preserve the linguistic content of

the anonymized speech and make it sound more intelligible. This is a very important aspect in

anonymization as these data are still needed for training and personalization purposes, therefore a

good speech quality is essential for the data to be still useful.

This comparison can be best viewed in the light of the fact that using synthesized speaker speech

identities, we were able to enhance the anonymization process as compared to using real identities.
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Figure 4.10: ASV Results for Testing Datasets of CTGAN, GMM [69], and Baseline [4].

Figure 4.11: ASR Results for Testing Datasets of CTGAN, GMM [69], and Baseline [4].



Chapter 5

Conclusion and Future Work

In this chapter, we summarise the work done in this thesis; highlighting the nature of the problem,

suggested solution, and evaluation results. We also discuss some of the possible enhancements and

applications as future work.

5.1 Conclusion

Motivated by the recent European privacy legislation, e.g., the general data protection regulation

(GDPR), mounting calls for protecting the privacy of speech data have emerged. The problem of

speaker anonymization aims at suppressing the personally identifiable information in a speech signal,

leaving all other aspects intact.

In this thesis, we examined the problem of speaker anonymization. This work was based on the

baseline anonymization system proposed by Interspeech 2020 Challenge: Voice Privacy [4]. We made

use of the capabilities of generative adversarial networks to generate authentic speaker identities i.e.

x-vectors [48] that could be further utilized in the speaker anonymization process. This chapter

summarizes the main findings of our work.

The VoicePrivacy challenge served as an initiative to spread the effort of developing speech

privacy-preserving solutions amongst the research community. The objective of the challenge was

to develop a system that would output a speech waveform that hides the original speaker’s identity

while preserving the intelligibility and naturalness of the speech as much as possible.

In that regard, the challenge provided a baseline for achieving such a goal [4] as the first effort to

mitigate the presented privacy issues. The work in this thesis was based on the baseline system in [4].

49
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The basic idea of the baseline system is to disentangle the speaker information from the linguistic

information in a given spoken utterance. Specifically, three different features are extracted from the

input utterance: fundamental frequency (fo), phoneme posteriogram (PPG), and x-vector. After

they replace the x-vector with a pseudo speaker identity from an external pool of speakers, extracted

features are merged through a pre-trained synthesizer model that produces mel-spectrograms which

will further be converted to a speech waveform using a special vocoder. This system suffers from

performance degradation due to the widely averaged speaker identities.

In this thesis, we proposed an anonymization technique in which we trained and evaluated 4

different designs of generative adversarial networks in order to generate authentic and never existing

x-vectors and chose the best design which was a CTGAN model. Evaluation metrics involved the

study of fake data distribution by calculating the cross-cosine similarity measures, measuring the

distance between fake and real distributions in addition to speaker verifiability and intelligibility

metrics. Performing speaker anonymization using this approach guarantees the extreme difficulty of

reversing the anonymized utterances back to the original speaker by the use of sophisticated attacker

systems as the pseudo identities are synthesized artificially, thus adding an extra anonymization layer

to the whole process and ensuring better quality for the anonymized utterances, making them more

real and close to being natural.

Using x-vectors generated by a CTGAN trained model, a pool of synthesized pseudo speaker

identities is created. The anonymization process is followed just like the baseline while achieving

better results in terms of WER (6.27% / 6.5% on libri dev/test benchmarks) and comparable results

in EER. These results highlight the fact that using artificially synthesized speaker identities achieves

better performance than using original x-vectors.

More generally, we believe that this is the first attempt in synthesizing human speaker identi-

ties using generative adversarial networks. The scope of use for such a model extends beyond just

anonymization. For example, text-to-speech systems and data augmentation for creating speech

corpora to train different kinds of models.

5.2 Future Work

As discussed in the previous chapter, the proposed GAN-based anonymization system presented

in this thesis showed potential improvement over the baseline system and the GMM-based system

[4, 69]. However, analyzing the results and hearing some samples revealed that there is a degradation

in quality occurring in cases where the chosen pseudo speaker identity is very far from the original

one. As the fundamental frequency and x-vector represent similar information about the identity
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of the speaker in terms of voice tone or speech style, combining them when they carry different

information corrupts the resulting signal.

As a matter of fact, the study in [70] presented the idea of incorporating a linearly-transformed

version of fo in synthesizing the anonymized speech. We believe that taking this modification one

step further to be included in the generative model training will have a positive impact on the

anonymization quality and reduce the risk of linking the anonymized utterance back to the orig-

inal speaker. This would encapsulate the information carried in fo with that encoded in the x-vector.

Some of the work that can be considered is to study and evaluate the use of the proposed

anonymization system in other speech-related systems such as multi-speaker text-to-speech (TTS)

where speech data can be synthesized using speaker identities and text inputs, thus perform data

augmentation to create data useful for training speech recognition models in any desired low re-

sourced languages.
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Appendix A

Tabulated Results

Table A.1: GAN-generated Pool: ASV Results for Development Data.

# Data set Enroll Trials Gender EER, % Cmin
llr Cllr

1 libri dev o a f 45.310 0.992 155.598

2 libri dev a a f 32.100 0.881 26.518

3 libri dev o a m 51.240 0.994 158.181

4 libri dev a a m 40.060 0.948 41.380

5 vctk dev com o a f 46.800 0.985 143.445

6 vctk dev com a a f 30.230 0.829 20.699

7 vctk dev com o a m 48.720 0.972 125.887

8 vctk dev com a a m 32.480 0.841 31.461

9 vctk dev dif o a f 50.810 0.986 147.962

10 vctk dev dif a a f 41.660 0.969 40.515

11 vctk dev dif o a m 47.100 0.990 117.038

12 vctk dev dif a a m 25.910 0.696 23.492
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Table A.2: ASV Results for CTGAN-generated Pool.

Data E T G EER, % Cmin
llr Cllr

Pool Size

1k 3k 5k 1k 3k 5k 1k 3k 5k

li
b

ri
-d

ev

o a 42.9 42.9 43.75 0.96 0.96 0.96 133.3 134.1 133.9

a a
f

39.49 39.35 39.49 0.93 0.92 0.92 21.40 21.43 21.19

o a 51.24 51.24 51.55 0.98 0.98 0.98 152.8 153.2 153.2

a a
m

43.01 42.55 42.80 0.952 0.952 0.95 37.08 37.43 37.5

li
b

ri
-t

es
t

o a 44.16 44.34 43.80 0.98 0.98 0.98 148.5 149.0 148.3

a a
f

35.95 36.31 35.77 0.89 0.89 0.89 24.72 24.58 24.37

o a 46.99 47.22 47.44 0.99 0.99 0.99 155.0 154.78 154.8

a a
m

43.21 44.54 43.88 0.97 0.97 0.97 47.56 47.72 48.21

vc
tk

-d
ev

-c
om o a 47.09 47.09 47.67 0.973 0.97 0.97 180.1 179.6 178.7

a a
f

32.56 32.27 32.27 0.821 0.82 0.817 12.96 12.73 12.72

o a 49.00 49.00 49.29 0.99 0.99 0.99 183.6 183.5 184.3

a a
m

39.60 39.32 40.46 0.92 0.92 0.92 32.65 32.40 33.62

vc
tk

-d
ev

-d
iff o a 45.93 46.55 46.10 0.95 0.96 0.95 168.0 168.1 167.1

a a
f

29.48 29.25 29.59 0.80 0.799 0.80 15.00 15.53 14.81

o a 47.79 47.84 48.24 0.99 0.99 0.99 160.30 160.1 161.0

a a
m

34.79 34.39 34.54 0.88 0.88 0.89 34.87 34.38 35.53

vc
tk

-t
es

t-
co

m o a 44.51 44.22 44.51 0.975 0.974 0.975 167.7 167.0 167.5

a a
f

37.57 36.99 37.86 0.878 0.881 0.876 13.74 13.76 13.60

o a 46.33 46.61 46.05 0.93 0.99 0.99 182.0 181.9 182.03

a a
m

38.42 38.14 38.70 0.94 0.93 0.93 32.32 31.72 32.27

vc
tk

-t
es

t-
d

if o a 45.01 44.39 44.65 0.99 0.98 0.98 151.1 150.4 150.9

a a
f

32.82 32.61 31.89 0.86 0.851 0.853 20.91 20.81 19.68

o a 48.56 47.65 47.7 0.998 0.997 0.997 162.9 162.2 162.3

a a
m

38.98 38.29 38.63 0.947 0.943 0.94 38.34 37.50 38.24
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Table A.3: ASR Results for CTGAN-generated Pool with Diffrent Pool Sizes.

# Data set Data WER, %, small WER, %, large

Pool Size

1k 3k 5k 1k 3k 5k

1 libri dev a 8.73 8.73 8.73 6.27 6.32 6.32

2 libri test a 8.89 8.94 8.93 6.50 6.57 6.57

3 vctk dev a 18.71 18.65 18.65 15.17 15.21 15.21

4 vctk test a 18.82 18.83 18.88 15.10 15.09 15.20
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Table A.4: ASV Results for both Development and Test Partitions for PLDA and Cosine Distances.

Data E T G EER, % Cmin
llr Cllr

Distance Choice

PLDA Cosine PLDA Cosine PLDA Cosine
li

b
ri

-d
ev

o a 42.9 44.32 0.96 0.976 135.8 136.37

a a
f

39.49 38.07 0.93 0.916 21.40 19.70

o a 51.24 52.95 0.98 0.989 152.8 155.51

a a
m

43.01 42.24 0.952 0.944 37.08 36.13

li
b

ri
-t

es
t

o a 44.16 45.44 0.98 0.987 148.5 150.74

a a
f

35.95 34.85 0.89 0.876 24.72 23.06

o a 46.99 48.55 0.99 0.995 155.0 156.5

a a
m

43.21 42.98 0.97 0.969 47.56 46.808

vc
tk

-d
ev

-c
om o a 47.09 48.55 0.973 0.979 180.1 182.5

a a
f

32.56 31.69 0.821 0.81 12.96 12.1

o a 49.00 51.28 0.99 0.995 183.6 184.5

a a
m

39.60 39.03 0.92 0.91 32.65 32.04

vc
tk

-d
ev

-d
iff o a 45.93 47.33 0.95 0.96 168.0 169.4

a a
f

29.48 28.35 0.80 0.78 15.00 14.14

o a 47.79 49.63 0.99 1.00 160.30 161.4

a a
m

34.79 34.5 0.88 0.88 34.87 33.9

vc
tk

-t
es

t-
co

m o a 44.51 45.95 0.975 0.9 167.7 168.5

a a
f

37.57 36.71 0.878 0.86 13.74 13.1

o a 46.33 49.44 0.93 0.99 182.0 183.4

a a
m

38.42 37.85 0.94 0.92 32.32 31.1

vc
tk

-t
es

t-
d

if o a 45.01 45.27 0.99 0.991 151.1 151.2

a a
f

32.82 31.5 0.86 0.84 20.91 19.62

o a 48.56 51.09 0.998 1.0 162.9 164.1

a a
m

38.98 37.2 0.947 0.93 38.34 36.6
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Table A.5: ASR Results for both Development and Test Data for PLDA and Cosine Distances.

# Data set Data WER, %, small WER, %, large

Distance Choice

PLDA Cosine PLDA Cosine

1 libri dev a 8.73 8.69 6.27 6.34

2 libri test a 8.89 8.95 6.50 6.54

3 vctk dev a 18.71 18.70 15.17 15.24

4 vctk test a 18.82 18.974 15.10 15.21

Table A.6: ASV Results for Testing Datasets of CTGAN (C), GMM (G) [69], and Baseline (B) [4].

Data E T G EER, % Cmin
llr Cllr

Pool Origin

C G B C G B C G B

L
ib

ri
T

es
t o a 44.1 48.9 47.2 0.98 0.99 0.99 148.6 154.4 151.8

a a
f

36.01 46.2 32.1 0.89 0.99 0.83 24.5 44.2 16.2

o a 47.2 49.7 52.1 0.99 0.97 0.99 154.8 157.1 166.6

a a
m

43.87 44.8 36.75 0.97 0.96 0.90 47.8 27.1 33.9

V
C

T
K

T
es

t o a 44.6 45.1 48.0 0.98 0.99 0.99 150.8 147.2 146.9

a a
f

32.4 42.1 31.7 0.85 0.96 0.84 20.4 16.3 11.5

o a 47.9 48.8 53.8 0.99 1 1 162.5 158.4 1.67

a a
m

38.63 49.5 30.9 0.94 0.96 0.83 38.0 30.7 23.8

Table A.7: ASR (WER) Results for Development and Test Data of CTGAN (C), GMM (G) [69]
and Baseline (B) [4].

# Data set Data C G B

1 libri dev a 6.27 11.89 6.39

2 libri test a 6.50 9.38 6.73

3 vctk dev a 15.17 16.35 15.38

4 vctk test a 15.10 16.65 15.23
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 إخفاء هوية المتحدّث باستخدام شبكات الخصومة التوليديّة

 إعداد
 آية سليمان الجعفري 

 المشرف
 أمجد الموسى

 المساعد المشرف
 إياد جعفر

 الملخص
 

من ا  طبتقات ا  ي تمكّن ا مستتتتت الأه من ا  فا    ا علأيلأأتاح استتتتت الأاه ا جلذك ا إنتا إ  ا  
  فا   ا مستتتتتتتت الأم ن م  ا شتتتتتتتتك  ا طبتعي وا ًار شتتتتتتتت    ا  يع بر ا كلاه و .معلا بأشتتتتتتتتكا  ما  فا

استتتتا ا شتتتتاصتتتتتّا ا مع  مات  مصتتتتلأوا  وً را   تشتتتتكّ  ا مادك ا صتتتت تتّا إلا أن أجلذتلم ا إنتّا.  ا  ي حستتتتّ
خطرا    ى تشتتتتتتتتتتك  ا كلاه ا ااص با مستتتتتتتتتت الأه  بتاص ا مستتتتتتتتتت الأه  ونا  ا ي ًّن اس ما تّا تستتتتتتتتتترّ 

خطر تسريب ا مادك ا ص تتا ًي امكا تا ًص  ا ل يا  ويكمنخص ص  ه وتللّأد سري ه ًي ا  عب ر. 
أ ظما  لاخ راقترن بلا م  تشتتتتتك  ا ن مات أخري ملأ ي م استتتتت الأاملا ثم إ ادك  منو  (ا نّبرك)ا صتتتتت تتا 

  ا ااصا با مس الأه ونا  ا ي اخ راق خص ص  ه. ا  حقق ا ص تتا 

ا مشتتتتتتتتك ا ًي معا ةا ا مادك ا صتتتتتتتت تتا   مستتتتتتتت الأه بح   ي م إخفا   ا ح     لإهي ما  أسلأ 
ي م استتتتتتت الأاه  ا طروسا ه يا ا م حلأث ا صتتتتتتت تتا واستتتتتتت بلأا لا لل يا ثا تا مب  مشتتتتتتتاون لا. ًي هإه 

بشتتتتتتتتتتريا  خفا  ه يا ا م حلأث ا ردتستتتتتتتتتتي. ا  ملأ هإا ا ح    ى  ه يات صتتتتتتتتتت تتا مذيفا  صتتتتتتتتتت ات
  ى تحستت ن  م تا إخفا   ا  ه يات صتت تتا بشتتريّا تعم   استت الأاه شتت كات ا اصتت ما ا     لأيا  

 ه يا ا م كّ م.

تمت تةرنا ا علأيلأ من أ  اع شتتتتتتت كات ا اصتتتتتتت ما ا     لأيا من أج  تحق ق أً تتتتتتت  أدا  ًي 
ملأ سققت شت كا ا اصت ما ا     لأيا ا ةلأو تا ا شترطتا أً ت  أدا  بالا  ماد و  .ا ا م حلأثإخفا  ه ي
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ا من م ب   ا شتت كا.  معاي ر  ى  لّأك  نما تق تم استت دالأمت   حكم   ى ج دك ا ل يات ا صتت تتا ا مدن  ة 
أً تتتتتتتتتتتتتتت  أ ظما إخفا  ا ل يا ا م اسا من   ى  لج إخفا  ا ل يا ا مق رح أدا   تف ق أثب ت ا ن ادج 

)تم تق تملا باستتتتتتتت الأاه ت  ي   ا صتتتتتتتت تتا   م حلأث ن من ا ل ياتس   ا قلأوك   ى إ  ا  نمتا م ن  ا 
تق تملا باستتتتتتتتتت الأاه اخ  او  )تمتشتتتتتتتتتتابه ج ب ا  ماه( و ستتتتتتتتتت ا ا  قاوب ل ن ا ل يات ا مذيفا وا ح ت تا 

 ظاه  با ضتتتتتتتتتتتتتتتاًا إ ى ا ك  ًّن معلّأ  ا ك مات ا ااط ا ا  ي سققلا .ستتتتتتتتتتتتتتم ر  ف(-ً  م غ ووف
%   ى مةم   ي ا بتتتتا تتتات 6.5% و 6.27ختتتاوجي    عرّف ا   قتتتادي   ى ا كلاه نتتتا تتتت  تم تتته 

   ى ا   ا ي. libri-test  و  libri-dev ا معتاويا

 

ش كا  ا اص ما ا     لأيا ش كات   خص صتا ا ص ت  إخفا  ه يا ا م حلأث  الكلمات المفتاحية:
 .ا اص ما ا     لأيا ا ةلأو تا ا شرطتا  ه يا ا ص ت
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