
979-8-3503-2024-4/22/$31.00 ©2022 IEEE

Stellar Objects Classification Using Supervised

Machine Learning Techniques

Deen Omat

Computer Engineering Department

Princess Sumaya University for

Technology

Amman, Jordan

dee20180947@std.psut.edu.jo

 Jood Otey

Computer Engineering Department

Princess Sumaya University for

Technology

Amman, Jordan

joo20180505@std.psut.edu.jo

Amjed Al-Mousa

Computer Engineering Department

Princess Sumaya University for

Technology

Amman, Jordan
a.almousa@psut.edu.jo

Abstract—Machine Learning is used in many fields of study.

This paper used machine learning to classify instances from the

Sloan Digital Sky Survey Data Release 17 (SDSS DR17) as a

galaxy, quasar, or star. Supervised learning was used to make

the classification. Multiple machine learning models were built,

Decision Trees, K-Nearest Neighbors, Multinomial Logistic

Classification, Multilayer Perceptron, Naïve Bayes Classifier,

Support Vector Classification, Random Forest, and Soft Voting

Classifier. Random Forest performed the best with 98%

accuracy and correctly classified all instances labeled as stars in

the dataset. The worst-performing algorithm was Naïve Bayes,

with 91% accuracy.

Keywords—Machine Learning; Stellar Classification; Sloan

Digital Sky Survey; Supervised Learning; Classification.

I. INTRODUCTION

Stars are made up of hydrogen and helium, the building

blocks of galaxies [1]. Galaxies are also made of gas and dust;

there are so many galaxies in the universe that scientists

cannot count [2]. Quasars are found in some large galaxies

with supermassive black holes at their centers and are

considered active galaxies themselves. Five to ten percent of

large galaxies are quasars [3].

The SDSS is one of the longest-running scientific research

programs funded by the Sloan Foundation in astronomy. It

has been running for 15 years and has succeeded in creating

the most detailed three-dimensional maps ever made of the

universe and in mapping one-third of the night sky. The data

collected by the SDSS is available to the public and falls

under open-source principles [4].

Stellar classification is the classification of stellar objects

depending on their spectral characteristics. Due to the large

amounts of data collected about the universe, scientists have

begun applying machine learning algorithms to sift through

the data [4]. This paper used eight classification algorithms

to classify the instances in the SDSS dataset.

This paper was divided into five sections. The first section

discussed similar work previously published. The second

section elaborated on the dataset and the data preprocessing

to prepare the data for the models used. The third section

discussed the algorithms used, which hyperparameters for

each algorithm were tuned, and the values chosen for those

hyperparameters. The fourth section revealed the results

obtained when the models were tested. Lastly, the fifth

section concludes and summarizes what was done in this

paper.

II. RELATED WORK

Machine learning has been used successfully to predict

medical, financial, and educational outcomes [5, 6, 7]. In

addition, machine learning is widely used in astronomy; this

section will cover three works done using machine learning.

In a paper published, the authors used the Cumulative Kepler

Object of Information dataset and machine learning to

identify the exoplanets in the dataset. Four algorithms were

used, Support Vector Machines, Random Forest, Ada Boost,

and Neural Networks. The Ada Boost Classifier had the

highest f1-score of 0.98. [8]

In another paper, the author used the fourth edition of the

SDSS. The algorithms used were Decision Trees, Logistic

Regression, and Naive Bayes Classifier to classify the

instance into either galaxy, star, or quasar. The highest mean

f1-score was achieved by their Decision Tree model, with a

mean score of 97.8%. In addition, the authors did some

feature engineering by adding the square of each feature, the

product of all pairs of parameters, and the logarithm of each

one. Their models could classify all the stars correctly, so the

improved dataset was used to classify whether an instance

was a galaxy or a quasar. The logistic regression classifier

achieved the highest f-1 score of 98.2% [9].

Chuntama et al. used the Canada-France-Hawaii Telescope

(CFHT) data archive [10]. Instances were classified into one

of the following categories: star, globular cluster, rounded

galaxy, elongated galaxy, or fuzzy object. To do the

classification, they used Random Forest, Multilayer

Perceptron, Weightless neural network (WiSARD), Deep

Learning (Weka deep learning), Logistic Regression, Support

Vector Machine, and Multiclass Classifier. Their Random

Forest classifier achieved the best performance with an

accuracy of 81.2%.

III. EXPERIMENTAL SETUP

The dataset mentioned earlier was initially images taken by

SDSS’s cameras. The data was then processed and uploaded

to Kaggle [11]. This paper aims to classify the instances into

three categories: galaxy, quasar, or star.

A. Attribute Information

The dataset contained 100000 instances, distributed as

follows: 59445 were galaxies, 21594 were stars, and 18961

were quasars. The pie chart in Figure 1 shows the class

distribution.

20
22

 In
te

rn
at

io
na

l A
ra

b
Co

nf
er

en
ce

 o
n

In
fo

rm
at

io
n

Te
ch

no
lo

gy
 (A

CI
T)

 |
 9

79
-8

-3
50

3-
20

24
-4

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

AC
IT

57
18

2.
20

22
.9

99
42

15

Authorized licensed use limited to: Princess Sumaya University for Technology. Downloaded on May 12,2024 at 12:17:18 UTC from IEEE Xplore. Restrictions apply.

None of the features had missing or null values. Some of the

features contained information about identifying the instance

in the dataset. However, they were not useful for determining

to which class the instance belonged and were therefore

excluded. After excluding the irrelevant features, the dataset

was reduced to 6 features and one label from the original 17

features and one label.

The original images were taken using a photometric system

that consisted of five filters (u, g, r, i, and z). A photometric

system is a set of defined ranges of wavelengths that can pass

through the filters, with sensitivity to incident radiation. The

sensitivity depends on the optical system, detectors, and

filters used. Table 1 shows the features kept and a brief

description of them.

Fig. 1. Stellar Objects Class Distribution

TABLE 1. Attributes Relevant to the Task

Feature Type Description

u float Ultraviolet filter in the photometric

systems

g float Green filter in the photometric system

r float Red filter in the photometric system

i float Near-infrared filter in the photometric

system

z float Infrared filter in the photometric

system

redshift float Redshift value based on the increase

in wavelength

class string Instance’s class

Before proceeding to data preprocessing, a histogram of each

attribute was plotted to see how each feature was distributed.

It was obvious that feature scaling would be necessary for

more accurate predictions. The distribution of g, redshift, u,

and z are shown in Figures 2, 5, 6, and 7, respectively might

make it hard for the models to make predictions. Figures 3

and 4 follow a similar distribution to a normal distribution.

Furthermore, every feature has a different range.

Fig. 2. Green Filter (g) Feature Pre-Scaling

Fig. 3. Near Infrared Filter (i) Feature Pre-Scaling

Fig. 4. Red Filter (r) Feature Pre-Scaling

Fig. 5. Redshift Value Feature Pre-Scaling

Fig. 6. Ultraviolet Filter (u) Feature Pre-Scaling

Fig. 7. Infrared Filter (z) Feature Pre-Scaling

Authorized licensed use limited to: Princess Sumaya University for Technology. Downloaded on May 12,2024 at 12:17:18 UTC from IEEE Xplore. Restrictions apply.

B. Data Preprocessing

The first step of data preprocessing was feature scaling.

Feature scaling is crucial to avoid bias towards any features

since not all features have the same range of values. In

addition, the Support Vector Classification, Multinomial

Logistic Regression, and Gaussian Naïve Bayes models

perform better when the data is normally distributed. Yeo-

Johnson power transform method was applied to have the

attributes follow a normal distribution [12].

Yeo-Johnson transformation is defined as:

����� �
⎩⎪⎪
⎨
⎪⎪⎧

��� � 1�� 1
� �� � � 0, � � 0

log��� � 1� �� � � 0, � � 0
 ���� � 1���� 1�

2 � �� � � 2, � � 0
 log��� � 1� �� � � 2, � � 0

(1)

Figures 8-11 show the distribution of g, redshift, u, and z,

respectively, after scaling. The features now follow a similar

distribution to a normal distribution. There was no significant

change in the distribution of the rest of the features.

Fig. 8. Green Filter (g) Feature Post-Scaling

Fig. 9. Redshift Value Feature Post-Scaling

Fig. 10. Ultraviolet Filter (u) Feature Post-Scaling

Fig. 11. Infrared Filter (z) Feature Post-Scaling

Fig. 12. Near Infrared Filter (i) Feature Post-Scaling

Fig. 13. Red Filter (r) Feature Post-Scaling

After scaling the features kept, to explore any correlations

present between the features, a heatmap was plotted. There

was a strong correlation of 0.83 between features g and u, a

strong correlation of 0.91 between features g and r, a strong

correlation of 0.95 between features r and i, and a strong

correlation of 0.96 between features i and z.

Fig. 14. Correlation Between Features

Before training the algorithms, the dataset was split into a

train set and a test set which was necessary to see how well

the model generalized to unseen data. The data was split

randomly. However, a random seed was used to ensure the

split's repeatability. This number ensures that the same rows

were chosen for the training and testing sets in every run. The

method provided by Sklearn (train_test_split) was used to do

Authorized licensed use limited to: Princess Sumaya University for Technology. Downloaded on May 12,2024 at 12:17:18 UTC from IEEE Xplore. Restrictions apply.

the splitting. 80% of the data was used for training, and 20%

was used for testing.

IV. ALGORITHMS USED

Eight classification algorithms were used. Fivefold cross-
validation was done on all algorithms. The following
subsections discuss each algorithm used and how it works.

A. Decision Trees

The first algorithm trained was Decision Trees. Decision

Trees are a widely used supervised learning algorithm to

solve both classification and regression tasks. In this paper,

the algorithm was used for multiclass classification.

Decision Trees classify instances based on whether or not

they meet the node’s condition; the process of classifying

based on whether a condition was met or not gives the

algorithm a tree-like structure. The node that does not branch

is called a leaf node, and it has the final class label of the

instance.

Decision Trees are prone to overfitting. Therefore,

hyperparameter tuning was done, which resulted in a lower

incidence of overfitting. Hyperparameter (max_depth) was

not set to any value, which meant the algorithm would keep

branching and cause overfitting. A randomized search was

used to find the best value for the hyperparameters given a

specific range. The hyperparameters regularized were

(min_sample_leaf), (max_leaf_nodes), and (max_depth) and

their values were set to 11, 11, and 6 respectively.

TABLE 2. Decision Trees Hyperparameters Tuned

Hyperparameter Value

Min Sample Leaf 11

Max Leaf Nodes 11

Max Depth 6

B. K-Nearest Neighbors

The following algorithm used was K-Nearest Neighbors.

Another popular supervised learning algorithm can be used

for both regression and classification.

This algorithm classifies an instance based on the majority

class of the K-nearest neighbors. An odd value for K is

typically used to avoid a tie between classes. Hyperparameter

Tuning was also done to increase the accuracy. The

hyperparameters that were set were (n_neighbors), (weights),

(p), and (leaf_size). After performing a randomized search

the (n_neighbors) was set to 19, (weights) was set to uniform,

(p) was set to 2, and (leaf_size) was set to 49.

TABLE 3. K-Nearest Neighbors Hyperparameters Tuned

Hyperparameter Value

N Neighbours 19

Weights Uniform

Power Parameter 2

Leaf Size 49

C. Multinomial Logistic Regression

The third algorithm used was a regression algorithm that can

also be used for classification. Multinomial Logistic

Regression calculates the probability that the instance

belongs to a class.

The probability is calculated using a sigmoid function, which

is defined as:

���� � 1
1 � exp��� (2)

The output of a sigmoid function is a value between 0 and 1.

The model makes its prediction based on whether the

probability is greater than 50%. If the calculated probability

of belonging to a class is greater than 50%, then the instance

is classified as that class. The only hyperparameter set was

(C), which was set to 1000.

TABLE 4. Multinomial Logistic Regression Tuned

Hyperparameter Value

The inverse of Regularization

Strength, C
1000

D. Multilayer Perceptron

The next supervised learning model trained was Multilayer

Perceptron, an artificial neural network. The structure of the

model is as follows: one input layer, one or more hidden

layers, and an output layer. Every neuron in all layers is

connected with every neuron in the next layer, except for the

output layer. All neurons except for input neurons are passed

through an activation function. The output of an activation

function decides whether the neuron should fire or not. The

activation function used in this model was the ReLu function,

and it is defined as:

 ��"� � max �0, "� (3)

Multilayer Perceptrons have many hyperparameters that can

be optimized. However, since tuning many parameters is

computationally intensive, a randomized search on two

parameters was done. The (hidden_layer_size) was set to

(100, 100, 1000), and (alpha) was set to 0.01.

TABLE 5. Multilayer Perceptron Hyperparameters Tuned

Hyperparameter Value

Hidden Layer Sizes (100, 100, 100)

Alpha 0.01

E. Naïve Bayes Classifier

The fifth algorithm used was Gaussian Naïve Bayes, a

probabilistic classifier; it uses Bayes theorem of probability

to predict the class of instances. The algorithm assumes

independence among features. The Gaussian Naïve Bayes

algorithm also assumes that the features follow a normal

distribution. After performing a randomized search on the

(var_smoothing) hyperparameter, it was set to

8.11308307896872e-05.

Authorized licensed use limited to: Princess Sumaya University for Technology. Downloaded on May 12,2024 at 12:17:18 UTC from IEEE Xplore. Restrictions apply.

TABLE 6. Naïve Bayes Classifier Hyperparameter Tuned

Hyperparameter Value

Smoothing 8.111308307896872e-05

F. Random Forest

Random Forest is a very popular supervised learning

algorithm. It works on classification and regression tasks. It

is an ensemble algorithm made up of decision trees. The

algorithm decides to classify an instance as a certain class

based on what class was selected the most by the decision

trees. Random Forest algorithm has a lot of hyperparameters,

but only (min_samples_split), (min_samples_leaf),

(max_features), and (max_depth) were tuned.

(min_samples_split) was set to 14, (min_samples_leaf) was

set to 6, (max_features) was set to log2, and (max_depth) was

set to 12.

TABLE 7. Random Forest Hyperparameters Tuned

Hyperparameter Value

Max Depth 12

Min Samples Split 14

Min Samples Leaf 6

Max Features log2

G. Support Vector Classification

Although Support vector classification is used when the

output class is binary, it was used in this paper. To be able to

use this classifier, multiple binary classifiers have to be used.

SciKit’s Support Vector Classifier automatically creates

binary classifiers using a one-vs-one scheme.

Support Vector Machine separates classes using an N-

dimensional hyperplane, where N is the number of features.

The data points closest to the hyperplane are called support

vectors. The algorithm maximizes the margin between the

hyperplane and the support vectors. To increase accuracy, the

randomized search was performed on selected

hyperparameters. Hyperparameter (C) was set to 100, and

(kernel) was set to RBF.

TABLE 8. Support Vector Classification Hyperparameters Tuned

Hyperparameter Value

The inverse of Regularization

Strength, C
100

Kernel RBF

H. Voting Classifier

The last classification algorithm used was a soft voting

classifier. It is an ensemble classifier based on the following

classifiers: Decision Trees, Multinomial Logistic Regression,

K-Nearest Neighbors, Naïve Bayes, and Multilayer

Perceptron. The soft voting classification works by first

taking the individual probability provided by each classifier

and taking the average. The data point is assigned to the class

that has the highest average probability.

V. RESULTS AND ANALYSIS

The following section will discuss the results of all the

algorithms used and compare them against each other. The

comparison will be made based on the following metrics:

precision, recall, f1-score, and accuracy.

Precision is defined as:

%&'(�)�*+ � ,-
,- � .- (4)

TP = True Positives, FP = False Positives

The recall is defined as:

&'(/00 � ,-
,- � .1

(5)

FN = False Negatives, F1-Score is defined as:

.2 � 2
3 1%&'(�)�*+4 � 3 1&'(/004 (6)

Accuracy is defined as:

5 � ,- � ,1
,- � ,1 � .- � .1

(7)

TN = True Negatives

The Decision Tree algorithm had an accuracy of 96%. It

could recall 100% of the star instances but misidentified

some, so the precision score was 98%. Decision Tree could

not recall all of the galaxy and quasar instances, which is why

their recall score was 98% and 86%, respectively. It correctly

classified 96% of the galaxy and quasar instances; the

precision score was 96%.

Fig. 15. Decision Tree Normalized Confusion Matrix

TABLE 9. Decision Tree Results

 Precision Recall F1-Score Support

Galaxy 0% 98% 97% 11860

QSO 96% 86% 91% 3797

Star 98% 100% 99% 4343

Accuracy 96% 20000

Macro

Average
96% 95% 95% 20000

Weighted

Average
96% 96% 96% 20000

Authorized licensed use limited to: Princess Sumaya University for Technology. Downloaded on May 12,2024 at 12:17:18 UTC from IEEE Xplore. Restrictions apply.

The K-Nearest Neighbors performed worse than Decision

Trees at correctly classifying stars. The recall score was 99%,

and the precision was 95%. However, it did perform better

when it classified quasars, recall score was 92%, and

precision was 97%. As for the galaxy class, the recall score

was 97% which was lower than that of the decision tree at

98%. K-Nearest Neighbors had an accuracy of 97%.

Fig. 16. K-Nearest Neighbors Normalized Confusion Matrix

TABLE 10. K-Nearest Neighbors Result

 Precision Recall F1-Score Support

Galaxy 97% 97% 97% 11860

QSO 97% 92% 94% 3797

Star 95% 99% 97% 4343

Accuracy 97% 20000

Macro

Average
96% 96% 96% 20000

Weighted

Average
97% 97% 97% 20000

The Multinomial Logistic Regression algorithm had an

accuracy of 96%. Like Decision Trees, it was able to recall

all of the star instances, but it correctly classified 97% of the

star instances. It performed the same as K-Nearest Neighbors

when it classified galaxy instances. It had a recall score of

97% and the precision score of 97%. Multinomial Logistic

Regression was better at recalling quasar instances than

Decision Trees, recall score was 90%.

Fig. 17. Multinomial Logistic Regression Normalized Confusion Matrix

TABLE 11. Multinomial Logistic Regression Results

 Precision Recall F1-Score Support

Galaxy 97% 97% 97% 11860

QSO 95% 90% 92% 3797

Star 97% 100% 98% 4343

Accuracy 96% 20000

Macro

Average
96% 96% 96% 20000

Weighted

Average
96% 96% 96% 20000

The Random Forest algorithm was the best-performing

algorithm, with an accuracy of 98%. The algorithm correctly

classified all the star instances, where both recall and

precision scores were 100%. Recall and precision scores for

class galaxy were 99% and 97%, respectively. Random

Forest and Support Vector Classification were the best at

recalling quasar instances, recall score was 92%.

Fig. 18. Random Forest Normalized Confusion Matrix

TABLE 12. Random Forest Results

 Precision Recall F1-Score Support

Galaxy 97% 99% 98% 11860

QSO 96% 92% 94% 3797

Star 100% 100% 100% 4343

Accuracy 98% 20000

Macro

Average
98% 97% 97% 20000

Weighted

Average
98% 98% 98% 20000

The Multilayer Perceptron had an accuracy of 97%. It

performed the same as Multinomial Logistic Regression for

the class star; recall and precision were 100% and 97%,

respectively. For class quasar, it performed better than

Multinomial Logistic Regression, recall score was 93%, and

the precision score was 96%. Multilayer Perceptron was

worse at recalling galaxy instances than Random Forest,

recall score was 97%.

Authorized licensed use limited to: Princess Sumaya University for Technology. Downloaded on May 12,2024 at 12:17:18 UTC from IEEE Xplore. Restrictions apply.

Fig. 19. Multilayer Perceptron Normalized Confusion Matrix

TABLE 13. Multilayer Perceptron Results

 Precision Recall F1-Score Support

Galaxy 98% 98% 98% 11860

QSO 96% 93% 94% 3797

Star 97% 100% 99% 4343

Accuracy 97% 20000

Macro

Average
97% 97% 97% 20000

Weighted

Average
97% 97% 97% 20000

Naïve Bayes was the worst-performing algorithm, with an

accuracy of 91%. It performed the worst at classifying quasar

and galaxy instances, the recall was 74%, precision was 85%

for class quasar, the recall was 90%, and precision was 95%

for the class galaxy. Naïve Bayes had a recall score of 100%

and 98% precision for star instances.

Fig. 20. Naive Bayes Normalized Confusion Matrix

TABLE 14. Naive Bayes Results

 Precision Recall F1-Score Support

Galaxy 95% 90% 92% 11860

QSO 74% 85% 79% 3797

Star 98% 100% 99% 4343

Accuracy 91% 20000

Macro

Average
89% 92% 90% 20000

Weighted

Average
92% 91% 91% 20000

The Support Vector Classifier had an accuracy of 97%. The

precision and recall score for class galaxy was 97% and 98%,

respectively. For class quasar, the recall was 92%, and the

precision was 97%. For class star, it had a recall score of

100% and the precision score of 97%.

Fig. 21. Support Vector Classification Normalized Confusion Matrix

TABLE 15. Support Vector Classification Results

 Precision Recall F1-Score Support

Galaxy 97% 98% 98% 11860

QSO 97% 92% 94% 3797

Star 97% 100% 99% 4343

Accuracy 97% 20000

Macro

Average
97% 97% 97% 20000

Weighted

Average
97% 97% 97% 20000

Lastly, Soft Voting Classifier. This algorithm also had an

accuracy of 97%. Recall for classes star and galaxy was 100%

and 98%, respectively. For class quasar, the recall was 91%.

Classes star and galaxy had a precision score of 97%, and

class quasar had a precision score of 96%.

Fig. 22. Soft Voting Classifier Normalized Confusion Matrix

Authorized licensed use limited to: Princess Sumaya University for Technology. Downloaded on May 12,2024 at 12:17:18 UTC from IEEE Xplore. Restrictions apply.

TABLE 16. Soft Voting Classifier Results

 Precision Recall F1-Score Support

Galaxy 97% 98% 97% 11860

QSO 96% 91% 93% 3797

Star 97% 100% 99% 4343

Accuracy 97% 20000

Macro

Average
97% 96% 96% 20000

Weighted

Average
97% 97% 97% 20000

TABLE 17. Summary of the Accuracy of All the Algorithms Used

Algorithm Accuracy

Decision Trees 96%

K-Nearest Neighbors 97%

Multinomial Logistic Regression 96%

Random Forest 98%

Multilayer Perceptron 97%

Naïve Bayes 91%

Support Vector Classifier 97%

Soft Voting Classifier 97%

VI. CONCLUSIONS

This paper used a supervised learning technique,

classification, to classify instances from the SDSS DR17

dataset into either galaxy, quasar, or star. Eight algorithms

were trained; the best classifier was Random Forest with an

accuracy of 98%, and the worst classifier was Naïve Bayes

with an accuracy of 91%. All of the algorithms performed

best when classifying star instances. Random Forest could

classify all the star instances in the dataset correctly. The

lowest correct classification for all the algorithms was for

instances labeled as quasars. This may be because quasar was

the least represented class, and adding more instances with

that class could help the algorithms perform better.

REFERENCES

[1] C. Zuckerman, "Everything you wanted to know about stars,"

National Geographic, 20 March 2019. [Online]. Available:

https://www.nationalgeographic.com/science/article/stars.

[2] "What Is a Galaxy?," NASA Science Space Place, [Online].

Available: https://spaceplace.nasa.gov/galaxy/en/.

[3] B. Peterson, "Quasar," Encyclopedia Britannica, [Online].

Available:

https://www.britannica.com/science/quasar/Finding-quasars.

[Accessed 29 May 2022].

[4] "The Sloan Digital Sky Survey," Max Planck Institute for

Astronomy, [Online]. Available:

https://www.mpia.de/en/research/collaborations/sdssiv.

[5] N. Abdulhadi and A. A. Al-Mousa, "Diabetes Detection

Using Machine Learning Classification Methods," in 2021

International Conference on Information Technology (ICIT),

Amman, 2021.

[6] A. Atwah and A. A. Al-Mousa, "Car Accident Severity

Classification Using Machine Learning," in 2021

International Conference on Innovation and Intelligence for

Informatics, Computing, and Technologies (3ICT), Zallaq,

Bahrain, 2021.

[7] Z. Bitar and A. A. Al-Mousa, "Prediction of Graduate

Admission using Multiple Supervised Machine Learning

Models," in IEEE SoutheastCon, Raleigh, 2020.

[8] A. R. Bhamare, A. Baral and S. Agarwal, "Analysis of Kepler

objects of interest using machine learning for Exoplanet

Identification," in International Conference on Intelligent

Technologies (CONIT), 2021.

[9] D. A. Petrusevich, "Implementation of machine learning

algorithms in the sloan digital sky survey DR14 analysis,"

IOP Conference Series: Materials Science and Engineering,

vol. 862, no. 4, 2020.

[10] T. Chuntama, P. Techa-Angkoon and C. Suwannajak,

"Multiclass Classification of Astronomical Objects in the

Galaxy M81 using Machine Learning Techniques," in 2020

24th International Computer Science and Engineering

Conference (ICSEC), 2020.

[11] fedesoriano, "Stellar Classification Dataset - SDSS17,"

January 2022. [Online]. Available:

https://www.kaggle.com/fedesoriano/stellar-classification-

dataset-sdss17.

[12] I.-K. Yeo and R. A. Johnson, "A new family of power

transformations to improve normality or symmetry,"

Biometrika, vol. 87, no. 4, p. 954–959, December 2000.

[13] M. A. T. Rony, D. S. A. A. Reza, R. Mostafa and M. A. Ullah,

"Application of Machine Learning to Interpret Predictability

of Different Models: Approach to Classification for SDSS

Sources," in 021 International Conference on Electronics,

Communications and Information Technology (ICECIT),

2021.

[14] "Machine Learning," Center for Astrophysics Harvard &

Smithsonian , [Online]. Available:

https://cfa.harvard.edu/research/topic/machine-learning.

Authorized licensed use limited to: Princess Sumaya University for Technology. Downloaded on May 12,2024 at 12:17:18 UTC from IEEE Xplore. Restrictions apply.

