

M.Sc. in Power Engineering & Sustainable Energy Curriculum

Thesis Track (34 Credit Hours):

A. Mandatory Courses (25 Credit Hours):

Course No.	Course Title	Credit Hours	Prerequisite
24700	Seminar & Research Methodology	1	-
24720	Power Systems & Renewable Energy Resources	3	-
24740	Smart Grids	3	-
24730	Energy Storage Systems	3	-
24711	Advanced Power Electronics and Applications	3	-
24741	Artificial intelligence for Energy Systems	3	-
			Finish 12 Credits
24799	MS Thesis	9	+
			(Co-requisite) 22700

B. Elective Courses (9 Credit Hours):

Course No.	Course Title	Credit Hours	Prerequisite
24780	Special Topics in Power & Energy Engineering (1)	3	-
24781	Special Topics in Power & Energy Engineering (2)	3	-
24712	Renewable Energy Grid-Integration	3	-
24731	Low Inertia Systems	3	-
24721	Power Quality & System Reliability	3	-
24702	Distributed Generation	3	-
24703	Protection of Power Systems	3	-

Course No.	Course Title	Credit Hours	Prerequisite
24706	Power System Control & Stability	3	-
24709	Flexible AC Transmission System (FACTS) devices and applications	3	-
24770	Optimal Control	3	-
20702	Mathematical Modeling and Optimization	3	-
25710	Wireless Networks Technologies	3	-
24713	Electric Machines and Drives	3	-
27750	Digital Signal Processing	3	-
24732	Energy Economics	3	-

Non-Thesis Track (34 Credit Hours):

A. Mandatory Courses (25 Credit Hours):

Course No.	Course Title	Credit Hours	Prerequisite
24700	Seminar & Research Methodology	1	-
24720	Power Systems & Renewable Energy Resources	3	-
24740	Smart Grids	3	-
24713	Electric Machines and Drives	3	-
24711	Advanced Power Electronics and Applications	3	-
24741	Artificial intelligence for Energy Systems	3	-
24730	Energy Storage Systems	3	-
24706	Power System Control & Stability	3	-
24790	Master Project	3	Finish 22 Credits
		3	(including 24700)
24791	Comprehensive Exam	0	Per Exam Regulations

B. Elective Courses (9 Credit Hours):

Course No.	Course Title	Credit Hours	Prerequisite
24780	Special Topics in Power & Energy Engineering (1)	3	-
24781	Special Topics in Power & Energy Engineering (2)	3	-
24731	Low Inertia Systems	3	-
24721	Power Quality & System Reliability	3	-
24702	Distributed Generation	3	-
24703	Protection of Power Systems	3	-
24709	Flexible AC Transmission System (FACTS) devices and applications	3	-
24770	Optimal Control	3	-

Course No.	Course Title	Credit Hours	Prerequisite
20702	Mathematical Modeling and Optimization	3	-
25710	Wireless Networks Technologies	3	-
24712	Renewable Energy Grid-Integration	3	-
27750	Digital Signal Processing	3	-
24732	Energy Economics	3	-

* Course Description:

	Seminar & Research Methodology
	Pre-requisite: None
	Credit Hours: 1
	This course aims to expose students to the most current developments and trends in the field
24700	of electrical engineering. It also aims to improve students' presentation, communication, and
	writing skills. In addition, the seminar covers basic research methodologies to prepare students
	for their master's thesis and provides them with a forum to represent their research work and
	offer critiques of others' work.

	Power Systems & Renewable Energy Resources
	Pre-requisite: None
	Credit Hours: 3
	Power Systems: Introduction to electric power systems, Structure of Electrical Energy Systems,
24720	Power System Components, Per Unit, Power flow calculations, symmetrical fault currents,
	Load modelling. Renewable Energy Resources: Overview about different Renewable Energy
	Resources, Solar PV systems, Solar thermal systems, Wind Energy

	Smart Grids
	Pre-requisite: None
	Credit Hours: 3
	Introduction to Smart Grids, Integration of low-carbon technologies, Decarbonization of heat
24740	and transport, Flexibility in low carbon electricity systems, Introduction to Electric Distribution
	Networks, Low-carbon technologies – technical aspects and their impacts (PV and EVs
	impacts and challenges), Smart metering, Demand site management technologies, Advanced
	Distribution Management System, Information and Communication Technology (ICT), wide
	area monitoring and protection, Smart homes and buildings.

	Energy Storage Systems
	Pre-requisite: None
	Credit Hours: 3
24730	Introduction to Energy Storage in power systems, Overview on Energy Storage Technologies.
	Mobile and Stationary Energy Storage Applications, Energy Storage with Renewable Energy
	Sources, Introduction to Electromobility, Integration of Electromobility with Energy Storage.
	Hydrogen Energy Systems.

	Advanced Power Electronics and Applications
	Pre-requisite: None
	Credit Hours: 3
24711 This course presents advanced topics on electrical energy conversion using power	
	electronics. Power semiconductor devices and their physics of operation are covered. The
	course focuses on DC/DC converters and DC/AC inverters, exploring their topologies, key
	components, design approaches, and control schemes in various applications.

	Artificial Intelligence for Energy Systems
	Pre-requisite: Non
	Credit Hours: 3
	Introduction to Data Analytics (Big data, data collection and processing, exploratory analysis),
24741	Machine learning techniques (supervised learning, unsupervised learning), deep learning
	(ANN, CNN, RNN), Time series models, statistics models, optimization, Case studies of ML
	algorithms in Power Systems (Load Forecasting, Renewable energy forecasting and prediction,
	faults detection, classification and estimation, DGs and smart grid optimization, Predictive
	maintenance, power quality classification, management of energy harvesting), other Machine
	Learning Applications in energy.

24799	24799 MS Thesis
	Pre-requisite: Finish 12 Credits (including 24700)
	Credit Hours: 9
	After reviewing literature, the student defines a research problem under the supervision of a
	faculty member. Then he/she develops a suitable solution and writes the thesis, describing the
	targeted problem, his/her suggested solution and obtained results. Afterwards, the student
	defends his thesis against an appointed examining committee.

24780	24780 Special Topics in Power & Energy Engineering (1)
	Pre-requisite: None
	Credit Hours: 3
	The objective of this course is to introduce advanced and new topics in Power Engineering
	and Sustainably Energy. The topics may change from one semester to another according to
	latest technological advances and available faculty specializations.

24781	Special Topics in Power & Energy Engineering (2)
	Pre-requisite: None
	Credit Hours: 3
	The objective of this course is to introduce advanced and new topics in Power Engineering and
	Sustainably Energy. The topics may change from one semester to another according to latest
	technological advances and available faculty specializations.

24712	24712 Renewable Energy Grid-Integration
	Pre-requisite: None
	Credit Hours: 3
	This course introduces technologies connecting renewable energy systems, such as PV
	systems and wind turbines, to the power grid. It covers the main power electronic-based
	energy conversion systems used in renewable energy applications, detailing their structure,
	functionality, and control mechanisms, including grid-forming, and grid-following inverters.

24731	Low Inertia Systems
	Pre-requisite: None
	Credit Hours: 3
	Introduction to modern power system components and transformation, Conventional Powe
	grids and networks, Concept of low inertia systems (main aspects and characteristics),
	Conventional generators and Inverter-based resources, Issues and challenges in low inertia
	system (stability, protection), Operation and control of low inertia systems, fault level and
	system strength, stability and weak grids.

24721	Power Quality & System Reliability
	Pre-requisite: None
	Credit Hours: 3
	Probabilistic Methods for Reliability Evaluation, Generation System Reliability, Interconnected
	System Reliability, Distribution System Reliability Indices, Monte Carlo Simulation,
	Introduction to Power Quality, Sources and classification of Disturbances in power systems,
	Power quality and renewable energy sources, mitigation measures to improve QoS, harmonics
	study and filter design.

24702	Distributed Generation
	Pre-requisite: None
	Credit Hours: 3
	Introduction to modern power system components and transformation, Introduction to
	Distributed Generation, Types of DG, Power Electronics- Interfaced Distributed Generation,
	Micro-grids and control, Grid codes and integration requirements, short circuit contribution of
	DGs, challenges and mitigation, hosting capacity of DGs.
	Dos, chanenges and mitigation, nosting capacity of Dos.

24703	Protection of Power Systems
	Pre-requisite: None
	Credit Hours: 3
	Fundamentals of power systems protection; non-directional and directional overcurrent
	protection; Distance protection of Transmission Lines, Differential protection of Generators,
	Transformers, and Busbars; Numerical (Digital) protection including wide-area protection
	systems; Protection schemes for the distribution network with Distributed Generation; Fault
	characteristics of renewables including PV and Wind; Fault level and system strength.

Pre-requisite: None

Credit Hours: 3

Power System Control: Automatic Generation Control, Speed governor and frequency control, State Space Modelling of Power Systems, Generation Control Methodologies, Reactive Power Control, Computer Simulation Methods for Power System Control. Power Systems Stability: Transient Stability Analysis Review, Small signal stability analysis, Models Based Stability Analysis, Lyapunov's stability methods in power systems, Excitation system, automatic voltage regulator, power system stabilizer, Voltage Stability, Effect of renewable energy penetration on small signal stability

24709	Flexible AC Transmission System (FACTS) devices and applications
	Pre-requisite: None
	Credit Hours: 3
	FACTS Concepts and General System Considerations, Voltage-Sourced Converters, Current
	Sourced Converters, Shunt Compensators: The Static Var Compensator (SVC), The Static
	Synchronous Compensator (STATCOM), Series Compensators: The Thyristor-Controlled
	Series Compensator (TCSC), The Static Synchronous Series Compensator (SSSC), Introduction
	to Combined Compensators and Other Compensators.

24770	Optimal Control
	Pre-requisite: None
	Credit Hours: 3
	This course gives the basic principles of optimal control. It presents background material on
	stability, observability, controllability, and minimality. Optimal control topics include static
	optimization, optimal control of discrete and continuous-time systems, and dynamic
	programming, including Solutions to linear quadratic regulation, fixed final state regulation,
	final-time free problems, constrained input problems, the tracking problem, and Billman's
	principle of optimality.

20702	Mathematical Modeling and Optimization
	Pre-requisite: None
	Credit Hours: 3
	This course explores a wide range of optimization techniques and their engineering
	applications. Topics covered include linear, integer, nonlinear, and stochastic optimization.
	The covered optimization techniques will be applied to problems involving data in different
	applications. Students will develop an understanding of mathematical formulations and use
	tools for computation. Metaheuristic optimization algorithms will also be introduced in this
	course.

	Wireless Networks Technologies
	Pre-requisite: None
	Credit Hours: 3
25710	Overview of wireless networking concepts. Key technologies and standards of Wireless
	Personal Area Networks, Wireless Local Area Networks, Wireless Body Area Networks,
	Wireless Vehicular Networks, and Cellular Networks. Performance analysis and evaluation of
	wireless networks.

	Electric Machines and Drives
	Pre-requisite: None
	Credit Hours: 3
	This course provides an in-depth study of electric machines and drive systems. The topics
	covered include the principles of electromechanical energy conversion, principles of electric
	machines, General structure and major components of electric machine; derivation of steady
24713	state model of electric machines and other electromechanical devices , Steady state
	performance analysis of electric machine and other electromechanical devices, Variable speed
	control and operation of electric machines, Matrix representation of magnetic coupling of
	windings, Dynamic modeling and simulation of AC machines , Interface of AC machines with
	voltage source converters, AC machine with power electronics control , Torque and speed
	capability of AC machine drives , Vector control of AC machines , Special topics on permanent
	magnetic machines and control.

	Digital Signal Processing
	Pre-requisite: None
27750	Credit Hours: 3
	Wiener filters. Linear prediction. Least Mean Square (LMS) adaptive filters. Normalized NLS
	adaptive filters. Recursive Least Square algorithms. Kalman filters. Implementing adaptive
	filters using MatLab.

	Energy Economics
	Pre-requisite: None
24732	Credit Hours: 3
24732	Review of Power Flow Concepts, Economic Dispatch, Optimal Power Flow, Unit Commitment,
	Electricity Markets, Cost of Generating Electrical Energy, Demand Side Management &
	Electricity Pricing, Ancillary Services.

	MS Project
	Pre-requisite: Finish 22 Credits Hours (including 24700)
	Credit Hours: 3
24790	This is a practical project to be conducted by students opting for the comprehensive exam
	track. The project allows students to integrate knowledge gained in multiple courses into a
	fully functional practical project. A written report and an oral presentation are due upon the
	completion of the project. Projects are to be evaluated by a committee formed by the
	department.

	Comprehensive Exam
	Pre-requisite: Per Exam Regulations
	Credit Hours: 0
24791	The comprehensive examination aims to measure the student's ability to understand and
	make correlations between the basic and advanced concepts that he/she has acquired through
	his/her studies, and to apply them in solving theoretical and applied problems in his/her field
	of specialization.

Guidance Plan (Thesis Track)

First Year – First Semester			First Year – Second Semester		
Course No.	Course Name	Credit	Course No.	Course Name	Credit
		Hours			Hours
24700	Seminar & Research Methodology	1	24741	Artificial intelligence for Energy	3
24700			24741	Systems	
2,4720	Power Systems & Renewable Energy	3	24740	Smart Grids	3
24720	Resources				
24711	Advanced Power Electronics and	3	24730	Energy Storage Systems	3
24/11	Applications		24730		
Total Credits		7	Total Credits	5	9

Second Year — First Semester			Second Year – Second Semester		
Course No.	Course Name	Credit	Course No.	Course Name	Credit
		Hours			Hours
-	Elective Course (1)	3	-	Elective Course (3)	3
-	Elective Course (2)	3	24799	MS Thesis	6
24799	MS Thesis	3			
Total Credits		9	Total Credit	5	9

Second Year — Summer Semester					
Course No. Course Name Credit Hours					
24799	MS Thesis	0			

Guidance Plan (Comprehensive Exam)

First Year — First Semester			First Year — Second Semester		
Course No.	Course Name	Credit	lit Course Course Name		Credit
		Hours	No.		Hours
24700	Seminar & Research Methodology	1	24741	Artificial intelligence for Energy	3
24700			24741	Systems	
24720	Power Systems & Renewable Energy	3	24740	Smart Grids	3
24720	Resources		24740		
24744	Advanced Power Electronics and	3	24720	Energy Storage Systems	3
24711	Applications		24730		
Total Credits		7	Total Cred	lits	9

Second Year – First Semester			Second Year – Second Semester		
Course No.	Course Name	Credit	Course No.	Course Name	Credit
		Hours			Hours
24713	Electric Machines and Drives	3	_	Elective Course (2)	3
24706	Power Systems Control & Stability	3	_	Elective Course (3)	3
_	Elective Course (1)	3	24790	MS Project	3
Total Credits		9	Total Credits		9

Second Year – Summer Semester					
Course No.	Credit Hours				
24791	Comprehensive Exam	0			